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Herein, we report a multicolor supramolecular polyrotaxane hydrogel constructed by in situ polymerization of
alkenyl-alkyl-modified pyrene pyridinium salt (PPD), cucurbit[n]urils (CB[nls, n = 7, 8), acrylamide (AM), and
double bond-modified spiropyran (SP), which can achieve reversible multicolor luminescence from blue to red
by light control. Benefiting from the spatial confinement of CB[n]s, PPD is encapsulated by the cavity of CB[7]/
CB[8] in a stoichiometric 1:2 or n:n to form the nanoparticles and nanofibers, and cascade assembly with the
sulfobutylether-p-cyclodextrin (SBE-PCD) to form nanosheets and nanorods respectively, achieving the CB[n]-
regulated supramolecular topological transform. Especially, in situ multi-component polymerization of CB[7]/
PPD/SP/AM achieves reversible multicolor supramolecular polyrotaxane luminescent hydrogel driven by light
fuel, which can be effectively applied to information encryption as well as erasable ink through fluorescence
resonance energy transfer (FRET) from PPDCCB[7] to SP. Therefore, the present research provides an effective
approach for in situ polymerization to construct supramolecular soft materials for photo-controlled reversible

Multicolor luminescence
Cucurbituril

Energy transfer
Information encryption

multicolor luminescence.

Introduction

Taking advantage of spatial confinement of macrocyclic compounds,
supramolecular cascade assembly to induce or enhance the lumines-
cence of organic chromophore through noncovalent interactions such as
hydrogen bonding[1-4], host-guest inclusion[5-8], metal-ligand coor-
dination[9-12], and in situ polymerization [13] has become one of the
research hotspots and a variety of stimulus-response systems have been
successfully developed for application in information encryption
[14-17], biosensing[18-22], energy transfer[23-26], molecular recog-
nition[27,28], and hydrogels[29-31]. Typically, cascade supramolecu-
lar systems consist of two or more supramolecular macrocycles
assembled with luminescent guest molecules to achieve stimulus
response through luminescence driven by light fuel, temperature, pH,
and mechanical force[32-38]. Among the various macrocycles, cucurbit
[n]urils (CB[n]s, n = 7, 8) with rigid cavities can induce molecular
folding[39,40] and molecular dimerization[41,42] through host-guest
interaction, which can effectively and significantly improve the

luminescent behavior of guest molecules. For example, Ni and
co-workers achieved multicolor luminescence, especially white light
emission, in a single solution by simply adjusting the amount of CB[8]
added, achieving the white light emission by a balanced mixture of the
guest’s intrinsic blue luminescence and the assembly’s yellow lumines-
cence. Moreover, the system exhibited a prolonged fluorescence lifetime
and high quantum yield, maintaining efficient luminescent performance
across various concentrations, which provided novel insights for the
development of intelligent and tunable luminescent materials, particu-
larly in the fields of optoelectronic devices and fluorescence sensors[43].
Multiply charged macrocycles, such as sulfobutylether-f-cyclodextrin
(SBE-BCD)[44] or sulfonatocalix[4]arene[45] were used as secondary
building blocks due to their ability to further assemble with the
host-guest complex by hydrophobic cavities and electrostatic interac-
tion, which can not only avoid the quenching of the fluorophores but
also change the luminescence behavior of the fluorophores. Our group
reported the SBE-BCD induced directional aggregation of cyanovinylene
derivatives into nanorods, achieving UV-vis absorption and
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near-infrared fluorescence red-shift. Under alkaline conditions, the
system showed reversible fluorescence blue-shift and 90-fold intensity
enhancement, demonstrating reversible acid-base responsibility, which
provided a new strategy for constructing intelligent fluorescent sensor
devices[46]. Beyond pH-responsive systems, light-responsive supramo-
lecular assemblies have also advanced rapidly in recent years[47-49].
Our group developed a light-responsive supramolecular hydrogel via
cascade assembly of Laponite (LP) with CB[7]-encapsulated dicyanos-
tilbene derivatives, which exhibited fluorescence enhancement and a 3D
gel network at high LP concentrations. Further integration of fluo-
rophores enabled reversible red/green chromatic switching, allowing
self-erasing information encryption and anti-counterfeiting[50]. How-
ever, macrocyclic hosts regulated supramolecular topological
morphology transform, especially pseudorotaxane in situ polymeriza-
tion to construct supramolecular reversible multicolor luminescent
hydrogel using cascade assembly strategies are rare reports to the best of
our knowledge.

Herein, we reported the construction of multicolored fluorescence
emission supramolecular polyrotaxane hydrogel based on alkenyl-alkyl
modified pyrenyl pyridine salts (PPD), CB[n]s, acrylamide (AM), and
double bond-modified spiropyran (SP) (Scheme 1). CB[7] confined PPD
enhanced the fluorescence, and emission was blue-shifted from 526 nm
to 500 nm, which the quantum yield increased from 54.65 % to 74.86 %.
However, the fluorescence emission was red-shifted from 526 nm to
534 nm while encapsulated by CB[8], and the quantum yield was up to
64.43 %, and nanoparticles and nanofibers were formed, respectively.
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Subsequently, when the cascade assembled with SBE-BCD, not only was
the emission of PPDCCB[7]/CB[8] assembly further red-shifted, but also
topological architectures underwent secondary variation to form nano-
sheets and nanorods, respectively. Furthermore, by copolymerizing CB
[71/PPD with SP and AM, where SP was used as an energy receptor, a
multi-color fluorescence emission hydrogel was successfully constructed
spanning blue, green, yellow, orange, and red, which was applied in
multicolor information encryption and erasable ink.

Results and discussion
Binding modes between PPD and cucurbit[n]uril

As photoluminescent guests, PPD was synthesized and characterized
by 'H NMR, '3C NMR spectroscopies, and high-resolution mass spec-
trometry (HR-MS) (Scheme S1; Figs. S1-S3). To study the CB[n]-
confined photoluminescence performance, we first performed UV-vis
to investigate the binding behavior of PPD with CB[n]s in aqueous so-
lution. As the concentration of CB[7] increased, the maximum absorp-
tion wavelength of PPD was shifted from 411 nm to 407 nm (Fig. 1a).
Based on the UV-vis absorption spectra, the binding constant between
PPD and CB[7] was calculated as 8.04 x 10® M! (Fig. S6a). To further
investigate the inclusion behavior, 'H NMR titration (Fig. 1e) was per-
formed. Due to the shielding effect of CB[7], the proton signals corre-
sponding to the alkyl-pyridine salt moiety (labeled Ha—Hy) exhibited an
upfield shift, indicating partial encapsulation of the alkyl-pyridine
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Scheme 1. Schematic illustration of the multilevel assembly mechanism of PPD, CB[7], CB[8], and SBE-BCD, as well as the photo-controlled reversible multicolor

supramolecular polyrotaxane luminescent hydrogel.
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Fig. 1. UV-vis absorption spectra of PPD in aqueous solution upon the gradual addition of (a) CB[7] and (b) CB[8] at 298 K ([PPD] = 1.0 x 10~° M). TEM image of
(c) PPDCCB[7] and (d) PPDcCB[8] ([PPD] = 1.0 x 10°°* M, [CB[7]] = 2.0 x 10 M, [CB[8]] = 1.0 x 10 M). (e) 'H NMR spectra of PPD with the addition of
increasing concentrations of CB[7]. ([PPD] = 1.0 x 1074 M, [CB[7]] = 0-3.0 x 10 M, 400 MHz, D20, 298 K).

moiety within the CB[7] cavity. Concurrently, the Hy, proton shifted
downfield, demonstrating its exposure at the periphery of the CB[7]
cavity. Based on the Job’s plot, the stoichiometric ratio of the host-guest
inclusion complex PPD:CB[7] was 1:2 (Fig. S7a). Different from CB[7],
CB[8] possesses a larger cavity, which could encapsulate two positively
charged PPDs. As shown by 'H NMR, upon incremental addition of CB
[8] to the guest solution, the proton signals of PPD gradually broadened.
When the CB[8] concentration exceeded 1 equivalent, the signals sta-
bilized, indicating that the complexation between PPD and CB[8]
reached equilibrium (Fig. S8), and the Job’s plot also suggested a 1:1
stoichiometric ratio for the PPD:CB[8] complex (Fig. S7b). However, it
remained unclear whether the complex adopted a simple 1:1 binding
mode or the sled n:n binding mode. To confirm this, UV-vis absorption
titration of PPDCCB[8] was performed. As the CB[8] concentration

increased, the absorption spectrum of PPD exhibited a red shift from
411 nm to 422 nm (Fig. 1b), consistent with J-aggregate formation upon
binding to CB[8]. Based on the UV-vis absorption spectra, the binding
constant between PPD and CB[8] was calculated as 1.32 x 107 M!
(Fig. S6b). Furthermore, the assembly topological morphologies of
PPDCCB[7] and PPDCCB[8] were characterized by transmission elec-
tron microscopy (TEM). TEM images revealed that PPD alone formed
irregular nanoparticles (Fig. S9), while PPDCCB[7] self-assembled into
spherical nanoparticles (Fig. 1¢), and PPDCCB[8] was assembled into a
linear structure (Fig. 1d), which was driven by the host-guest interaction
between PPD and CB[n]s. The differences in topological morphologies
may be attributed to the different binding mode between PPD and CB
[71/CB[8], where the sled n:n binding mode of PPDCCB[8] tends to
aggregate into linear polymers.
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Fluorescence behavior of supramolecular cascade assembly in solution

In order to research the macrocycles confined fluorescence behavior,
fluorescence titration experiments were performed, which showed that
with the concentration of CB[7] increased, the fluorescence peak of PPD
was blue-shifted from 526 nm to 500 nm (Fig. 2a). Under excitation
with a 365 nm UV lamp, fluorescent colors ranging from green to blue
can be observed in an aqueous solution. Similarly, increasing CB[8]
concentration caused a red-shift of the PPD fluorescence peak from
526 nm to 534 nm (Fig. 2b), accompanied by fluorescent color changes
from green to yellow. To further regulate the luminescent behavior of
PPDCCB[n], we attempted to introduce aCD, fCD, yCD, and SBE-BCD
into the PPDcCB[n] assembly. Results showed that only SBE-BCD
modulated the emission of PPD within the assembly (Figs. S10a, b), so
that SBE-BCD was selected for secondary assembly with PPDcCB[n] due
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to the electrostatic interactions enabled by its sulfonate groups. Upon
adding SBE-BCD, the fluorescence peak of free PPD was red-shifted from
526 nm to 546 nm (Fig. S11a). For the PPDCCB[7] assembly with SBE-
BCD, the emission peak was red-shifted from 500 nm to 550 nm
(Figs. 2¢, S11b). Under 365 nm UV irradiation, the fluorescent color
changed from blue to yellow in aqueous solution (Fig. 2¢, inset).
Similarly, the PPDCCB[8] assembly with SBE-BCD exhibited a red-shift
from 534 nm to 570 nm (Figs. 2d, S11c), with fluorescent colors tran-
sitioning from yellow to orange-red (Fig. 2d, inset). In addition, the
quantum yield of PPDCCB[7] was 74.86 %, and that of PPDCCB[8] was
64.43 %, which was significantly higher than the quantum yield of PPD
(54.65 %). The quantum yield of PPDCCB[7]@SBE-$CD was 71.84 %.
PPDCCB[8]@SBE-BCD had a quantum yield of 61.93 % (Figs. S12a-e).

TEM imaging revealed that the PPDCCB[7]@SBE-BCD inclusion
complex formed nanosheets with lengths of 400-800 nm (Figs. 2e,
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Fig. 2. The fluorescence emission spectrum of (a) PPDcCB[7] and (b) PPDCCB[8] at 298 K (Aex = 390 nm, [PPD] = 1.0 x 105 M). (¢) Fluorescence contrast analysis
of PPD, PPDCCB[7], PPDCCB[7]@SBE-BCD. Inset: Photograph from left by PPD, PPDCCB[7], PPDCCB[7]1@SBE-BCD upon irradiation with 365 nm UV. (d) Fluo-
rescence contrast analysis of PPD, PPDcCB[8], PPDcCB[8]@SBE-BCD. Inset: Photograph from left by PPD, PPDCCB[8], PPDCCB[8] @SBE-BCD upon irradiation with
365 nm UV. TEM of (e) PPDCCB[7]@SBE-BCD and (f) PPDCCB[8]@SBE-BCD ([PPD] =1.0 x 10° M).
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S13a), while the PPDcCB[8]@SBE-BCD inclusion complex self-
assembled into nanorods measuring 500-1500 nm (Figs. 2 f, S13b).
The topological transformation was driven by electrostatic interactions
between negatively charged SBE-BCD and PDDcCB[n] complexes,
resulting in a more compact structure. The assembly processes of SBE-
BCD with PPD and PPDcCB[n] were investigated by monitoring trans-
mittance at 550 nm. In the absence of SBE-BCD, the transmittance of
PPD showed no significant concentration dependence (Figs. S14a,
S15a). However, with SBE-BCD, transmittance decreased sharply and
stabilized at concentrations above 35 pM (Figs. S14b, S15b). This
contrast indicated SBE-BCD promoted stable co-assembly through elec-
trostatic interactions, significantly lowering the critical aggregation
concentration (CAC) to 35 pM. The optimal molar ratio of PPD@SBE-
BCD was determined as 1:0.64 at 50 pM PPD, where transmittance
reached a minimum of 94 % (Figs. S14c, S15c¢). For PPDCCB[7]@SBE-
BCD, the minimum transmittance occurred at a 1:0.36 molar ratio, with
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no further change upon additional SBE-BCD (Figs. S14d, S15d). Simi-
larly, PPDCCB[8] @SBE-pPCD showed minimal transmittance at a 1:0.64
ratio (Figs. S16a, b).

To achieve fluorescence resonance energy transfer (FRET), we
introduced SP as the energy receptor. SP was synthesized and charac-
terized by 'H NMR, '3C NMR (Scheme S2; Figs. S4-S5). First, the spectral
overlap of the SP moiety was evaluated through UV-vis spectroscopy
(Fig. S17a). The results demonstrated that significant spectral overlap
emerged after the SP unit underwent isomerization to its merocyanine
(MCQ) form, indicating that the MC isomer served as an ideal energy
acceptor. Next, we studied the photo-controlled energy transfer between
the PPDCCB[7]@SBE-BCD and SP under varied UV irradiation dura-
tions. Upon 365 nm UV irradiation, the absorption peak at 500 nm
progressively diminished while a new peak at 632 nm intensified.
Concurrently, the solution color transitioned from yellow to red
(Fig. S17b, inset). Subsequently, the irradiation of the 530 nm lamp
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caused the 500 nm peak to recover and the 632 nm peak to attenuate,
with the solution reverting to yellow color (Fig. S17c, inset). The
PPDCCB[8]@SBE-BCD complex with SP exhibited analogous photo-
responsive energy transfer behavior (Fig. S17d, inset).

Solid hydrogel behavior of polyrotaxane

To research the supramolecular solid hydrogel behavior, we con-
structed the supramolecular hydrogels through in situ copolymerization
of PPD/CB[n]/AM in water. The synthetic route of the supramolecular
hydrogels was described (Schemes S3-S5). The mechanical properties of
supramolecular hydrogels were studied by rheological tests. When fre-
quency(w) = 6.28 rad/s was fixed in the rheological experiments, the no
gel-to-sol state transition was observed in a wide strain region (y<10 %,
Figs. 3a, ¢, S18a). Moreover, according to frequency sweep test results at
a fixed strain (y) of 1 %, both PPD gel, PPDCCB[7] gel, and PPDCCB[8]
gel showed higher storage modulus(PPD’/PPDcCB[7]’/PPDcCB[8])
than loss modulus (PPD”’/PPDCCB[7]’/PPDCCB[8]*), implying that
the gel-phase materials were stable enough and the gel structure could
not be destroyed at the tested frequency range of o= 0.01-100 rad/s
(Figs. 3b, d, S18b), and the crosslink densities of PPD /PPDCCB[7]
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/PPDCCB[8] were caculated as 7.31, 5.51, and 3.31 mol/m?®, respec-
tively [51]. Additionally, scanning electron microscopy (SEM) images of
the freeze-dried supramolecular gels revealed a highly porous structure.
The pore size of the PPDCCB[7] gel was approximately 2-3 pm, larger
than that of pristine PPD gel (1-2 pm), with the PPDcCB[8] gel exhib-
iting a further enlarged pore size of 3-4 pm. (Figs. 3e, f, S19). Notably,
the prepared PPD /PPDCCB[7] /PPDCCB[8] hydrogels all demonstrated
favorable stability, exhibiting no significant changes in their photo-
luminescence (PL) spectrum after 24 h of ambient storage. (Fig. S20).

Photo-controlled reversible luminescent behavior of supramolecular
hydrogel

Building upon these intriguing experimental observations, SP was
introduced as the energy acceptor to fabricate photo-controlled supra-
molecular rotaxanes through in situ copolymerization with PPDCCB[7],
AM, and methyl acrylate. The synthetic route of the supramolecular
hydrogels was described. We systematically investigated the photo-
regulated FRET behavior between the PPDCCB[7] supramolecular
hydrogel and SP under alternating UV light irradiation. Upon 365 nm
UV irradiation, the absorption peak at 500 nm progressively diminished,
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accompanied by the emergence of a new absorption band at 655 nm
(Fig. 4a). Subsequent exposure to 530 nm visible light, the 500 nm peak
intensity was restored, and the 655 nm signal was attenuated (Fig. 4b),
and the fluorescence emission changes can be cycled more than five
times without obvious fatigue under alternating 365 nm and 530 nm
light irradiation (Fig. 4c¢). The direction of fluorescence the color change
was confirmed in the CIE in the 1931 chromaticity chart, from (0.264,
0.407) to (0.311, 0.319) irradiation (Fig. 4d), in which the color of the
fluorescence changed from blue to yellow to red under 365 nm irradi-
ation can also be observed through naked-eye and portable cameras
(Fig. 4e). This dynamic optical modulation enabled the successful
development of reversibly multicolor luminescent hydrogels, achieving
programmable and precise fluorescence switching between blue and red
emission. SEM analysis further confirmed that with the incorporation of
SP as an energy acceptor, the hydrogel maintained a dense and uniform
porous structure. This confined environment resulted in a slower ring-
opening/closing reaction rate of SP compared to in solution, laying
the foundation for subsequent information anti-counterfeiting applica-
tions. Moreover, during the reversible ring-opening/closure isomeriza-
tion of SP, the internal structural changes of the hydrogel were
negligible (Fig. S21).

Information encryption and erasable ink of supramolecular Hydrogels

Although the PPD, PPDcCB[n], and PPDCCB[n] @SBE-BCD solutions
exhibited similar pale-yellow coloration, their photoluminescent be-
haviors differed significantly, enabling their application in information
storage. By utilizing diverse assembly modes, the 520NK patterns were
indistinguishable under daylight but became discernible under 365 nm
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irradiation (Fig. 5a). For cryptographic encryption, PPDCCB[7]@SP
hydrogel encoded critical information, while non-critical regions were
replaced with PPDcCB[7] hydrogel. Under 365nm illumination,
encrypted information emerged as red fluorescence, which gradually
reverted to its original state upon 530 nm irradiation. After being
exposed to a 365 nm irradiation, the encrypted information 302 was
displayed (Fig. 5b). Unlike unidirectional anti-counterfeiting systems,
the bidirectionally reversible multicolor rotaxane system demonstrated
the potential for dynamic information storage and encryption. Fluores-
cent patterns with encoded messages can be fabricated through
information-loading and decryption processes. Besides, when a custom-
made photomask was applied to the rotaxane system, a cartoon image
was obtained after 40 s of 365 nm irradiation. Regions exposed to visible
light emitted red fluorescence, while masked areas showed blue fluo-
rescence. Subsequent irradiation with 530 nm light can erase the image,
achieving information deletion. Notably, the reversibility of the multi-
color rotaxane architecture allowed cyclic information erasure and
rewriting, facilitating the sequential generation of target patterns
(Fig. 5¢). Moreover, it can be used for fabricating time multicolor gel
changes with time, and the cartoon-shaped hydrogel kept changing from
blue to yellow, orange, and then to red under 365 nm UV irradiation
(Fig. 5d).

Conclusion

From the above research, we can summarize that macrocycles CB[n]s
can not only regulate supramolecular topological morphology but also
efficiently enhance fluorescence behavior. Through the supramolecular
cascade assembly of PPD, CB[n], and SBE-BCD, we successfully

irr. 10 S

Fig. 5. (a) Information storage of PPD, PPDCcCB[7], PPDcCB[7]@SBE-pCD, PPDcCB[8], PPDCCB[8] @SBE-BCD, under daylight and 365 nm UV irradiation. (b) ‘302’
via Morse code under light irradiation. (¢) Schematic diagram and under UV lamp of the construction of writable and self-erasing PPDCCB[7]@SP supramolecular
hydrogel. (d) Under the irradiation of 365 nm UV, the color of the PPDCCB[7]@SP supramolecular hydrogel changes.
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constructed reversibly multicolor fluorescent supramolecular rotaxane
and polyrotaxane systems. The host-guest interactions with CB[n]
enabled programmable polychromatic fluorescence emission. The pri-
mary assembly PPDcCB[7] exhibited enhanced blue fluorescence at
500 nm. Subsequent electrostatic assembly with SBE-BCD resulted in
fluorescence quenching and red-shift to 550 nm for the PPDCCB[7]
@SBE-BCD complex, accompanied by the formation of nanosheets.
Similarly, the PPDcCB[8] assembly displayed intensified yellow fluo-
rescence at 534 nm, which further red-shifted to 570 nm upon hierar-
chical SBE-BCD integration, yielding rod-like nanostructures.
Remarkably, the introduction of SP into the PPDCCB[n] through in situ
copolymerization with AM and methyl acrylate activated RET, gener-
ated near-infrared fluorescence at 655 nm. This strategy achieved a
color-tunable supramolecular rotaxane system with reversible blue-to-
red fluorescence switching. The resultant system demonstrated prom-
ising applications in dynamic information storage through optically
regulated fluorescence coding. With in-depth research, supramolecular
hydrogels are anticipated to enable multi-stimuli-responsive encryption
platforms by integrating optical properties manipulation with shape-
morphing and self-healing capabilities.

Experimental section

Materials: All reagents and solvents were available from commercial
sources and used directly without any purification.

Transmission Electron Microscopy (TEM): A 10 pL sample solution
(PPD =1 x10~°M, CB[7] = 2 x10™> M, CB[8] = 1 x10~> M, SBE-BCD
=1 x107°M) was carefully drop-cast into a pristine copper grid. After
air-drying under ambient conditions, Photographs were then taken
using TEM.

Scanning electron microscope (SEM): Prepare solution (PPD =
1 x 107° M, CB[7] = 2 x107° M, CB[8] = 1 x 10~ M), lyophilized,
Photographs were then taken using TEM.

Synthesis of compounds PPDCCB[7]@SP hydrogel: In 3 mL of water
PPD (1 x 10~° M) and CB[7] (2 x 10> M) were assembled, followed by
the addition of Tween 80 aqueous solution (1 mL). SP (1 x 1073 M) was
dissolved in methyl acrylate (30 pL) and then added to the solution,
followed by vortexing for 10 min to form a homogeneous emulsion. AM
(500 mg) was added to the emulsion, and the mixture was vortexed for
an additional 10 min. Ammonium persulfate (5 mg) was added as a
thermal initiator, and the system was placed in an 80 °C oven for 1 h to
prepare PPDCCB[7]@SP hydrogel.
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