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ABSTRACT: Constructing hypoxia fluorescence probes is a
developing research field, due to the hypoxic nature of many
diseases, caused by an inadequate supply of oxygen. Herein, we
reported a noncovalent hypoxia-responsive turn-on fluorescence
probe, constructed by biocompatible sulfato-β-cyclodextrin (SCD),
azobenzene derivative (1), and fluorochrome rhodamine 123
(Rho123). TEM image and dynamic light scattering (DLS)
indicated that negatively multicharged SCD and positively charged
1 aggregated into nanoparticles with an average diameter of 53.8
nm through electrostatic interactions. The critical aggregation concentration (CAC) of 1 in the presence of SCD was obtained as
0.028 mM investigated by optical transmittance experiments quantitatively. The supramolecular assembly (SCD/1) works as both
carrier and fluorescent quencher of Rho123. Verified by UV/vis absorption experiments, the azobenzene derivative 1 can be reduced
efficiently by chemical reductant with a rate constant of 1.598 min−1. Florescence experiments showed that SCD/1 made a
thoroughly quenching of Rho123 and 8-fold recovery of fluorescence intensity after reduced. Under hypoxia condition the
azobenzene group of 1 was reduced by azo reductase, accompanying with the release and fluorescence recovery of Rho123. The
noncovalent hypoxia-responsive ternary supramolecular assembly was used for hypoxia cell imaging.
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■ INTRODUCTION

Hypoxia is an important indicator of solid tumor caused by the
rapidly proliferating and expanding of neoplasms, insufficient
oxygen supply, and hindered oxygen diffusion by poor adapted
vascularization.1,2 Therefore, the research on hypoxia-respon-
sive probes is essential for the diagnosis and treatment of
various diseases.3−5 The high expression level of various
bioreductive enzymes in solid tumor due to the low
concentration of oxygen results in an enhanced reductive
stress microenvironment.6,7 Many hypoxic-sensitive groups
such as azo,8,9 nitroimidazole,10−12 quinones,13 and N-
oxides,14−16 which were all reducible compounds,17,18 were
introduced into probes and used in many fields, such as tumor
hypoxia detecting,19 fluorescence imaging,20,21 drug deliv-
ery,16,22−25 and so on. Among them, azo derivatives as old and
extensively studied compounds, possessing the character of
reversible photoisomerization and being redox-responsive,
have been widely used in biological systems in recent
years.26 The fluorescence of chromophores can be quenched
by azo due to the quick dissipation of excited state energies
caused by a rapid conformation transition of the NN
bond.27 Interestingly, the restoration of fluorescence can be
realized after the reduction of the NN bond in an azo
derivative under reducing conditions (such as hypoxia, in the
presence of chemical reductant or bioreductase). In recent
years, many hypoxia imaging probes derived from the azo

group were reported.28 Nagano et al. reported a hypoxia-
responsive near-infrared fluorescent probe used for hypoxia
imaging and real-time monitoring of ischemia, which is the first
hypoxia probe with the azo group as a quencher.29

Subsequently, they directly conjugated the azo group to
fluorescent rhodamine derivatives and got two probes with
different hypoxia detection thresholds.30 Zhu et al. constructed
a novel probe for hypoxia imaging by conjugated azonaph-
thalimide and rhodamine B.19 He et al. reported a reversible
azo-conjugated fluorescent probe and used it for cycling
hypoxia imaging.31 As far as we know, most of them are
constructed through a covalent method by linking the azo
group to a fluorophore with high fluorescence yield. In 2019,
Guo et al. constructed a hypoxia imaging probe through a
noncovalent strategy based on a supramolecular host−guest
interaction.32 Supramolecular chemistry33−35 provides an
alternative method to design hypoxia imaging probes, which
show easy synthesis, low toxicity, and flexibility. Herein, we
constructed a hypoxia-responsive fluorescence probe through

Received: February 4, 2022
Accepted: March 9, 2022
Published: March 24, 2022

Articlepubs.acs.org/acsapm

© 2022 American Chemical Society
2935

https://doi.org/10.1021/acsapm.2c00228
ACS Appl. Polym. Mater. 2022, 4, 2935−2940

D
ow

nl
oa

de
d 

vi
a 

N
A

N
K

A
I 

U
N

IV
 o

n 
A

pr
il 

20
, 2

02
2 

at
 0

0:
19

:1
7 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hui-Juan+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Heng-Yi+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Cong+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bing+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xianyin+Dai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiufang+Xu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yu+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsapm.2c00228&ref=pdf
https://pubs.acs.org/doi/10.1021/acsapm.2c00228?ref=pdf
https://pubs.acs.org/doi/10.1021/acsapm.2c00228?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsapm.2c00228?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsapm.2c00228?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsapm.2c00228?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/aapmcd/4/4?ref=pdf
https://pubs.acs.org/toc/aapmcd/4/4?ref=pdf
https://pubs.acs.org/toc/aapmcd/4/4?ref=pdf
https://pubs.acs.org/toc/aapmcd/4/4?ref=pdf
pubs.acs.org/acsapm?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsapm.2c00228?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/acsapm?ref=pdf
https://pubs.acs.org/acsapm?ref=pdf


the electrostatic interactions of sulfato-β-cyclodextrin (SCD)
and an azobenzene derivative (1). In this system, commercial
dye rhodamine 123 (Rho123) was loaded and its fluorescence
was quenched. Under hypoxic conditions, the azo group of 1
gets reduced, leading to the release of dyes and restoration of
their fluorescence (Scheme 1).

■ RESULTS AND DISCUSSION

A water-soluble supramolecular assembly was constructed by
SCD and azobenzene derivative 1 through electrostatic
interactions. SCD was commercially available, and 1 was
obtained in 81% yield through a simple synthetic route
(Scheme S1). The 1H NMR, 13C NMR, and ESI-MS spectra of
1 are shown in the Supporting Information (Figure S1−S3).
Molecule 1, composed of cationic imidazole groups and
hydrophobic alkyl chains, can form aggregates with SCD
through electrostatic interactions. The aggregation behaviors of
1 in the presence of SCD were investigated by optical
transmittance experiments quantitatively. In the presence of
SCD, the optical transmittance of 1 decreased due to the
formation of large aggregates (Figure 1a). And the critical
aggregation concentration (CAC) of 1 in the presence of SCD
was obtained as 0.028 mM by monitoring the dependence of
the optical transmittance at 520 nm on the concentration of 1
(Figure 1b). While the optical transmittance experiments of 1
in the absence of SCD proceeded through the same method
(Figure S5), no distinct changes in the optical transmittance at
520 nm were observed, indicating that 1 cannot form
aggregates without SCD. Furthermore, the optical trans-
mittance of 1 at a fixed concentration (1.2 × 10−4 M) with
addition of different concentrations of SCD was monitored
(Figure 1c). With the increase of the concentration of SCD,
the optical transmittance of the SCD/1 solution at 520 nm

decreased and then increased with a minimum at a SCD
concentration of 2 × 10−5 M (Figure 1d), indicating that the
best molar ratio for SCD/1 was 1:6. Subsequently, the
aggregation behaviors of 1 in the presence of SCD were
quantitatively investigated by dynamic light scattering (DLS),
ζ potential, and transmission electron microscopy (TEM). As
shown in Figure 2a, the SCD/1 assembly showed an average
diameter of 53.83 nm. The TEM image indicated that

Scheme 1. Schematic Illustration of a Hypoxia-Responsive System and Molecular Structures of SCD, 1 and Rho123

Figure 1. (a) Optical transmittance of SCD (2 × 10−5 M) with
different concentrations of 1 in PBS buffer at 298 K. (b) Dependence
of the optical transmittance at 520 nm on the concentration of 1 in
the presence of SCD (2 × 10−5 M) in PBS buffer at 298 K. (c)
Optical transmittance of 1 (1.2 × 10−4 M) with different
concentrations of SCD in water at 298 K. (d) Dependence of the
optical transmittance at 520 nm on the concentration of SCD in the
presence of 1 (1.2 × 10−4 M) in PBS buffer at 298 K.
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numerous uniform nanoparticles were formed by an SCD/1
aggregate (Figure 2c). The particles showed negative ζ
potential (−50.29 mV), indicating that the surface of the
nanoparticles was negative charged (Figure 2b). The SCD is
composed of randomly sulfonated cyclodextrins with an
average degree of substitution of 12. The negative ζ potential
is mainly due to the negative charges on SCD upon
aggregation with 1. Furthermore, the UV/vis experiments of
SCD/1 with different concentrations of Rho123 were
executed. As shown in Figure S8c, no obvious change about
the absorption peak of SCD/1 was observed, indicating the
addition of Rho123 did not affect the assembly of SCD/1.
Combining with the hydrophilic and hydrophobic properties, it
is reasonable to speculated SCD/1 form nanoparticles through
layers of stacked.36

Furthermore, the reducible capacity of SCD/1 was examined
by UV/vis spectroscopy. As reported azobenzene derivatives,37

1 showed a strong π−π* transition band at 360 nm and a weak
n−π* transition band around 400 nm (Figure 3a, red line).

After adding SCD into the solution of 1, the absorption of 1
changes with blue shift (Figure 3a, black line), owing to the
formation of aggregation. Upon addition of excess sodium
hydrogen sulfite (SHS), a chemical reductant to mimic
azoreductase, the color of SCD/1 changed from yellow to
colorless transparent within 5 min (photos in Figure 3a). The
reducing kinetics were calculated according to the real time
absorbance at 360 nm. The curve of the absorbance at 360 nm
depending on time was well fitted in a quasi-first-order reaction

decay model (adjusted R2 > 0.998), giving the rate constant
1.598 min−1 (Figure 3b). The half-life was calculated as 25.6 s.
The mass spectrometry analysis was used to examine the
reduction product of 1. The ESI-MS spectrum of 1 showed
peaks at 244.1447 and 244.6469, which are corresponding to
[M − 2Br−]2+ (Figure S3). After adding chemical reductant
SHS, compound 1 was reduced and produced phenylamine
derivatives 2, evidenced by the appearance of peaks at
246.16039 and 247.16410 in the ESI-MS spectrum corre-
sponding to [M − Br−]+ (Figure S4). Besides the use of a
chemical reductant, 1 could also be reduced by bioreductase.
Next, the nicotinamide adenine dinucleotide phosphate
(NADPH) in the presence of DT-diaphorase, a reductase
which was overexpressed in many cancers and can be activated
under hypoxia, were added to SCD/1 solution.38 In normoxia
condition, there were no changes in the absorbance of SCD/1
(Figure S7a). After putting the solution under hypoxia
conditions for several minutes, the absorbance of SCD/1
around 360 nm decreased similar to the addition of SHS,
which means the azo bond was successfully reduced under
hypoxia conditions (Figure S7b).39,40 All these results
confirmed that SCD/1 showed good reducibility to both
chemical reductant and bioreductase, making the fluorescence
restore of commercial dyes possible.
Furthermore, we explored the reducibility of SCD/1

through fluorescence after loading Rho123. As shown in
Figure S8a, the fluorescence intensity of Rho123 decreased and
reached the lowest value (Ifree/Iload = 13) upon the gradual
addition of 4 equiv of SCD/1. It is very important to explore
the fluorescence quenching mechanism in the noncovalent
hypoxia imaging system. Currently, most of the hypoxia
imaging probes are covalent systems and are based on the
fluorescence quenching mechanism of ultrafast photoinduced
isomerization of azo groups or Förster resonance energy
transfer (FRET).19,29,30,41 Due to the noncovalent interaction
other than covalent conjugation between SCD/1 and Rho123,
it is impossible that the fluorescence quenching of Rho123 was
caused by the fast conformation change of azobenzene.30,42 As
shown in Figure S6, there was no appreciable overlap between
the absorption spectrum of SCD/1 and the fluorescence
emission spectrum of Rho123, excluding the FRET quenching
mechanism. We speculated that the fluorescence quenching of
Rho123 may be caused by 1 through the photoinduced
electron transfer (PET) mechanism.43 Simple molecular orbital
theory is a common tool used to discuss fluorescence switching
problems.44 According to the calculation results, the HOMO
and LUMO energy of Rho123 is lower than the HOMO and
LUMO energy of compound 1, respectively, which leads to the
emergence of a reducing PET process. As shown in Figure 4,
the HOMO−LUMO orbital energy difference of the
fluorescent molecule Rho123 is 3.07 eV. After the electrons
of fluorescent molecule Rho123 are excited, it is difficult to
return to its HOMO orbital. Because the HOMO orbital
energy of Rho123 is lower than the HOMO orbital energy of
compound 1 by 0.13 eV, and electrons from the HOMO
orbital of compound 1 are more easily transferred to the
HOMO orbital of Rho123, occupying the HOMO orbital of
Rho123 and quenching the fluorescence. Furthermore, Azo−
OH (Scheme S2) as one of the building units of 1 was
explored as a reference. The Azo−OH showed higher HOMO
energy than Rho123 (Table S1), but only slight quenching of
fluorescence was caused by adding Azo−OH into the solution
of Rho123 (Figure S9). All in all, it is rational to believe that

Figure 2. (a) DLS data and (b) ζ potential and TEM of SCD/1 (c)
before and (d) after adding SHS (scale bar: 200 nm).

Figure 3. (a) Absorbance spectra of 1 (24 μM), SCD/1 (4 μM/24
μM) at different time after the addition of SHS. (b) Absorbance of
SCD/1 (4 μM/24 μM) at 360 nm as a function of time following
addition of SHS in PBS buffer and the corresponding curve according
to the quasi-first-reaction decay model.
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the fluorescence quenching of Rho123 was caused by 1
through the photoinduced electron transfer (PET) mechanism.
As expected, the fluorescence intensity of Rho123 was

gradually increased and reached 8-fold of the original intensity
with the break of azobenzene in 1 after adding SHS to the
solution (Figure 5a). Such an apparent increasing of

fluorescence intensity indicated the feasibility of the non-
covalent assembly in hypoxia imaging. The operating principle
is based on the fracture of the NN bond in 1 accompanying
the disassembly of SCD/1 under hypoxia conditions. No
significant changes in the fluorescence intensity of SCD/1/
Rho123 were observed when adding biological species

(cysteine, homocysteine, glutathione, and NADPH), indicating
that the strong binding of the ternary assembly can resist the
interference of many biological species (Figure S10).
After exploring the in vitro fluorescence off-on response of

SCD/1/Rho123, we investigated their application in hypoxia-
selective imaging in living cells. Furthermore, the A549 cells
were incubated for 10 h under hypoxia and normoxia
conditions after addition of SCD/1/Rho123. Then the cells
were washed with phosphate buffer for 3 times and imaged by
laser confocal microscopy. As shown in Figure 5, the A549 cells
coincubated with the ternary supramolecular assembly SCD/
1/Rho123 under hypoxia condition showed bright fluores-
cence, while the fluorescence of cells incubated under
normoxia condition was negligible. These results proved that
the SCD/1/Rho123 system show good fluorescence off-on
response to oxygen. The cytotoxicity of SCD/1 was evaluated
by a cell counting kit-8 (CCK-8) assay with various
concentrations of SCD/1 from 0 μM/0 μM to 50 μM/300
μM, under hypoxic and normoxic conditions for 12 h. The
results of cell cytotoxicity experiments showed that the SCD/1
had negligible cytotoxicity.

■ CONCLUSION

In summary, a hypoxia-responsive fluorescence turn-on system
for activatable cell imaging was constructed based on a facile
supramolecular strategy. In this system, the easily obtained 1
can aggregated to form supramolecular nanoparticles with an
average diameter of 53.8 nm induced by commercially
obtained SCD. The CAC of SCD/1 was measured as 0.028
mM by optical transmittance experiments quantitatively.
Furthermore, the supramolecular assembly was used as a
carrier of fluorochrome Rho 123 and showed excellent
fluorescence quenching effect to Rho123 (Ifree/Iload = 13).
The quantum chemical calculation indicated that the
quenching mechanism was PET. The UV/vis experiments
indicated that the azobenzene derivative can be reduced by
both chemical and biological reductant efficiently. The
fluorescence intensity of Rho 123 restored 8-fold after adding
chemical reductant to the ternary supramolecular assembly.
Benefiting from the hypoxia-responsive fluorescence character,
the ternary supramolecular assembly was used for hypoxia
imaging of A549 cells.
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