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ABSTRACT: Nowadays, the rapid emergence of antibiotic-
resistant pathogens has become a serious threat to human health.
As an effective antimicrobial therapy, supramolecular materials
show unprecedented advantages because of their flexible and
adjustable interactions with biological molecules. Supramolecular
hydrogels are now widely applied in biomedical fields because of
their outstanding biocompatibility, high water content, easy
preparation, and unique functions. Herein, we conveniently
prepared a stable supramolecular hydrogel by simply mixing β-
cyclodextrin-modified chitosan (CS−CD) with AgNO3 in a basic
environment. The obtained supramolecular hydrogel, which is positively charged and possesses numerous β-cyclodextrin cavities,
could efficiently load anionic drug diclofenac sodium (DS) through the electrostatic interaction and host−guest inclusion.
Significantly, the biological experiments demonstrated that this supramolecular hydrogel exhibited a high antibacterial effect and
good ability of promoting wound healing owing to the cooperative contribution of CS, Ag+, and DS.

■ INTRODUCTION
The rapid emergence of antibiotic-resistant pathogens has now
become a serious threat to human health,1 and supramolecular
materials, especially supramolecular hydrogels, show unprece-
dented advantages as an effective antimicrobial therapy
because of their flexible and adjustable interactions with
biological molecules.2 Similar to natural living tissue, hydrogels
are capable of retaining high content of water or biological
fluid.3 Additionally, hydrogels also possess diverse structures
and functions because of their tunable compositions.4 In 1961,
the hydrogel cross-linked with poly(hydroxyethyl methacry-
late) was used for eye treatment, which is the first application
of the hydrogel in the biomedical field.5 From then on,
continuous efforts were devoted to the development of
hydrogels in fields of cell culture,6 drug delivery,7 wound
healing,8 and antimicrobial activity.9 Among various hydrogels,
the cyclodextrin (CD)-based supramolecular hydrogel that
combines the advantages of the hydrogel and cyclodextrin
becomes a booming research field, showing the significant
applications in drug loading and transport10 and detection11

and removal of small molecules.12 On the other hand, chitosan
(CS) is one of the sugar-based biopolymers obtained from
chitin via deacetylation reaction13 and has many advantages
including good biocompatibility, strong biodegradable ability,
and low toxicity. Therefore, CS and its derivatives are widely
applied in biomedical fields.14 Because it is antibacterial,
hemostatic, and mucoadhesive, CS is regarded as an ideal
candidate of wound healing materials.15 Lu et al. reported a
series of multistimuli-responsive and moldable supramolecular
hydrogels cross-linked by complexation of transition metal ions

and biopolymers.16 Herein, we constructed a stable supra-
molecular hydrogel via the complexation of a conjugated
polysaccharide, that is, β-cyclodextrin-modified CS (CS−
CD)17 with Ag+ followed by the noncovalent incorporation
of a nonsteroidal anti-inflammatory analgesic, diclofenac
sodium (DS). There are several inherent advantages of this
Ag/CS−CD/DS supramolecular hydrogel as a potential
material for treating bacterial infection and enhancing wound
healing: (1) both CS and CD are water soluble, biocompatible,
and biodegradable; (2) silver is an antimicrobial substance
with low toxicity to mammalian tissues18 and can be used in
the prevention and treatment of burns, injuries, and
infections;19 and (3) DS has a strong anti-inflammatory effect
and high safety20 and becomes one of the most widely used
nonsteroidal anti-inflammatory drugs for skin.21 As a
significant result, the Ag@CS−CD/DS supramolecular hydro-
gel can not only present the good antibacterial ability but also
accelerate wound healing. Compared with previous reports,22

the natural hydrogel matrix based on polysaccharides possesses
several good qualities, including high oxygen permeability and
improved biocompatibility, and thus becomes an ideal material
for wound dressings. In addition, the main advantage of this
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Scheme 1. (a) Illustration of the Preparaed Hydrogels through Supramolecular Complexation; (b) Illustration of the
Supramolecular Hydrogel Loading Anionic Drugs-DSa

aThe networks driven by the supramolecular complexation between Ag+ and OH and NH2 groups in the CS chains.

Figure 1. (a) Pictures of the supramolecular hydrogel. (b) Strain sweep tests of the supramolecular hydrogel at γ = 1−10,000% and ω = 1 rad s−1.
(c) Frequency sweep tests of the supramolecular hydrogel at ω = 0.1−100 rad/s and strain (γ) = 100% at 25 °C. (d) Continuous step strain tests of
supramolecular hydrogels at γ = 0.1 and 100%.
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work is that the antibacterial activity of Ag@CS−CD + DS is
assigned to cooperative contribution, which avoids the high
silver content causing a potential cytotoxic hazard.23

■ EXPERIMENTAL SECTION
Materials. β-CD was purchased from Sigma-Aldrich. CS was

purchased from Qingdao Brightmoon Seaweed Industry Co., Ltd.
(Deacetylation: 75−80%, viscosity: 20−300 cps, and 15−22 kDa). DS
was purchased from ApexBio.
NMR Spectroscopy. 1H NMR was recorded at 298 K on a Bruker

AVANCE III 500 MHz instrument. Chemical shifts are reported in
ppm relative to the signals corresponding to the residual non-
deuterated solvents (D2O: δH = 4.79 ppm).
UV−Vis Spectroscopy. UV−vis spectra and the optical trans-

mittance of the aqueous solution were determined in a quartz cell
(light path 10 mm) on a Shimadzu UV-3600 spectrophotometer
equipped with a PTC-348WI temperature controller.
SEM Experiments. Scanning electron microscopy (SEM) images

were obtained on a Hitachi S-3500N scanning electron microscope.
Zeta Potential Measurement. Zeta potential was measured by a

zeta PALS + BI-90 instrument (Brookhaven Co. USA).
Rheology Measurement. The rheological characterization of the

hydrogel was carried out on an AR-G2 rheometer (TA instruments,
Etten-Leur, The Netherlands) equipped with a 11 steel cone
geometry of 20 mm diameter and a solvent trap. The gap was set
at 1.0 mm.
β-CD-modified CHIT 1 was prepared according to the previous

report,17 and the substitution degree of CS−CD was 6.6%.
Preparation of the Ag@CS−CD Hydrogel. The Ag@CS−CD

supramolecular hydrogel (1 mL) was prepared by mixing 100 μL of
NaOH aqueous solution (0.2 M) with 800 μL of CS−CD solution
(0.5 wt %, 1% acetic acid), followed by the addition of 100 μL of
freshly prepared AgNO3 aqueous solution (0.3 M) under vigorous
stirring at room temperature.
Preparation of the Ag@CS Hydrogel. The Ag@CS supra-

molecular hydrogel (1 mL) was prepared by mixing 100 μL of NaOH
aqueous solution (0.2 M) with 800 μL of CS solution (0.5 wt %, 1%
acetic acid), followed by the addition of 100 μL of freshly prepared
AgNO3 aqueous solution (0.3 M) under vigorous stirring at room
temperature.
Loading of DS to the Hydrogel. Ag@CS−CD (0.37 g) was put

into a dialysis bag with a molecular weight cutoff of 5000, which was
then put into 250 mL (0.03 g/L) of DS solution, and the mixture was
stirred at a speed of 100 rpm for about 30 min. After freeze-drying,
the loading efficiency of the supramolecular hydrogel toward DS was
calculated by weighting. The DS loading conditions of the Ag@CS−

CD hydrogel and Ag@CS hydrogel are the same, including the
solution concentrations of DS and loading time.

The animal experiments were approved by the Nankai Ethical
Committee in compliance with the Chinese law on experimental
animals.

■ RESULTS AND DISCUSSION

The addition of Ag+ to the solution of CS−CD in 1.0% acetic
acid produced the free-standing Ag@CS−CD supramolecular
hydrogel in situ (Scheme 1). After mixing the Ag+ solution and
the CS−CD solution at an appropriate pH value at room
temperature, the complexation of Ag+ and CS chains was rapid,
leading to the formation of an interwoven network and then
the formation of a hydrogel.16 The mechanical properties of
the hydrogel were characterized by the rheology measurement.
As shown in Figure 1, the linear elastic-viscous area was
obtained by the experiments of amplitude sweep at strain (g) =
0.01−10,000%. Under the strain from 1 to 400%, G′ (storage
modulus) and G″ (loss modulus) remained nearly unchanged.
When the strain increased continuously, G′ decreased
dramatically, causing the intersection of G′ and G″ curves at
a strain of 50%. Meanwhile, a gel−sol state transition was
observed, indicating the breakdown of the hydrogel network.
With the angular frequency ranging from 0.1 to 60 rad/s,
neither G′ nor G″ exhibited obvious changes, and G′ was
always larger than G″, demonstrating a good stability of the
hydrogel toward the oscillation condition (Figure 1c). In
addition, the steady shear rheological experiments (Figure 1d)
indicated that the hydrogels had shear-thinning properties, and
the viscosity of the hydrogel decreased obviously as the shear
force was applied.
SEM and zeta potential were also performed to characterize

the structure features of the supramolecular hydrogel. As
shown in Figure 2a, the SEM image of the supramolecular
hydrogel showed a clear three-dimensional porous network
structure. By the way, the water content of the supramolecular
hydrogel was calculated as 93% based on the mass ratio of the
dry gel to the freshly made gel, and the content of Ag was
measured as 4.74% by the inductive coupled plasma−atomic
emission spectroscopy. Figure S3 showed the time-dependent
transmission curves of the supramolecular hydrogel, where the
optical transmittance of Ag@CS−CD recorded at 1 min after

Figure 2. (a) SEM image of the supramolecular hydrogel (the scale bar in SEM image is 10 μm); (b) time-dependent UV−vis spectra of DS
aqueous solution in the presence of the supramolecular hydrogel.
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mixing CS−CD solution with Ag+ was similar to that recorded
at 60 min, indicating that the complexation of CS−CD with
Ag+ was both fast and stable. In addition, the supramolecular
hydrogels could keep intact for 6 months at room temperature,
showing good biostability. Interestingly, the supramolecular
hydrogel also presented good thermal stability and could
endure heating to 95 °C without any phase transition. This
thermal stability was better than most of the reported
supramolecular hydrogels that usually presented a gel-to-sol
transition after heating (Figure S4).24 However, the supra-
molecular hydrogel would slowly turn black after being
exposed to daylight and should be kept away from light.
Moreover, the zeta potential of the supramolecular hydrogel

was measured as +47.77 mV (pH 5.76), indicating that the
supramolecular hydrogel was highly cationic and might have
the possibility of associating with anionic substrates via
electrostatic interactions (Figure S2). In addition, the various
CD cavities in the supramolecular hydrogel could also
associate the substrates via the host−guest inclusion complex-
ation. Herein, DS, a nonsteroidal anti-inflammatory analgesic,
was selected to be loaded onto the supramolecular hydrogel
because DS could incorporate into the supramolecular
hydrogel through not only the inclusion of β-CD cavity
toward DS but also the electrostatic attraction between the
cationic supramolecular hydrogel and the anionic DS molecule.
Job’s plot of the β-CD/DS system showed an inflection point
at a molar ratio of 0.5, indicating that the β-CD cavity could
include DS via a 1:1 host−guest inclusion stoichiometry
(Figure S6), and its association constant was reported to be
200−600 M−1.25 Owing to the joint contribution of the host−
guest inclusion complexation and the electrostatic attraction,
the as-made hydrogel exhibited the good ability of loading DS.
By measuring the characteristic absorption of DS at 276 nm,
the photometric standard curve of DS was obtained with the
absorption intensity as the ordinate and the DS concentration
in aqueous solution as the abscissa (Figure S5). Accordingly,
the encapsulation efficiency and the loading efficiency of the
supramolecular hydrogel toward DS were calculated as 69.3

and 16.7%, respectively, and the loading saturation was
reached at 30 min (Figure 2b).
The antibacterial efficiency of the hydrogels was further

evaluated by an in vivo wound healing model. The wounds on
the mouse back with approximately 1 cm diameter were first
infected by 5 × 107 cfu of the pathogenic Pseudomonas
aeruginosa strain PAO1. The infected wounds were then
treated by the hydrogel (100 mg/wound) per day. After 6 days
of treatment, the wounds were imaged, and the wound tissues
were sampled for detection of pathogenic numbers. As
compared to the control, the groups of DS, Ag+ + DS, Ag@
CS−CD, Ag@CS + DS, and Ag@CS + DS exhibited reduced
wound areas (Figure 3a). Among them, the Ag@CS−CD + DS
group showed a much higher wound healing rate than other
groups (Figure 3a,b), suggesting the highest wound healing
efficiency of Ag@CS−CD + DS. cfu assays further showed that
all the treated groups had a reduction of cfu as compared to
the control group. More strikingly, the Ag@CS−CD + DS
group showed the lowest cfus than other groups (0.2 × 107 vs
1.0−2.8 × 107 cfu) (Figure 3c), indicating the highest
antibacterial efficiency of Ag@CS−CD + DS among the
components. Therefore, the Ag@CS−CD + DS hydrogel
could strongly accelerate wound healing and kill pathogenic
bacteria.

■ CONCLUSIONS

In summary, we successfully constructed a supramolecular
hydrogel through a simple but facile method from biocompat-
ible building blocks CS, CD, and Ag+. This supramolecular
hydrogel is highly cationic and possesses numerous β-CD
cavities. As a result, the supramolecular hydrogel could
efficiently load the anionic drug through electrostatic
interaction and host−guest inclusion. Owing to the coopera-
tive contribution of CS, Ag+, and DS, the resultant hydrogel
exhibited high wound healing ability and excellent antibacterial
effect.

Figure 3. In vivo antibacterial and wound healing capacity of the hydrogels in the mouse wound-infection model. (a) Images of wounds on mouse
back in different treatments after 6 days of treatment. Scale bar = 0.5 cm. The calculated areas of each wound were 0.56, 0.5, 0.33, 0.25, 0.17, and
0.08 cm2 from light to right. (b) Wound healing rate of different groups. (c) Bacterial numbers of different groups in wound tissues evaluated by
colony forming unit (cfu) assays.
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