Molecular Binding Behaviors of Sulfonated Calixarenes with Phenanthroline-diium in Aqueous Solution and Solid State: Cavity Size Governing Capsule Formation

Kui Wang,*‡† En-Cui Yang,† Xiao-Jun Zhao,‡ Hong-Xi Dou,‡ and Yu Liu,*‡†

†Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
‡Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China

Supporting Information

ABSTRACT: The molecular binding behaviors of p-sulfonatocalix[4]arene (SC4A), p-sulfonatocalix[5]arene (SC5A), and p-sulfonatothiacalix[4]arene (STC4A) with 5,6-dihydropyrazin[1,2,3,4-lmn][1,10]phenanthroline-4,7-diium (DP2+) were systematically investigated by crystallography, NMR spectroscopy, and microcalorimetry at pH 1–2. The obtained results showed that, in both aqueous solution and the solid state, DP2+ was immersed into the cavity of the sulfonated calixarene host in a slantwise degree with the aromatic moiety being included first. The different slantwise degree of the guest in the host cavity determined whether the host–guest capsule could be formed in the solid state. Furthermore, all three sulfonated calixarene hosts showed high affinities with DP2+ in the magnitude of 105–106 M−1 in aqueous solution, and the binding modes for host–guest complexation were explained from a thermodynamic viewpoint.

INTRODUCTION

Construction of molecular capsules is a significant topic of research for their various applications in binding, separation, and sensing of small molecules and ions; stabilization of reactive intermediates; and catalysis.1 Calixarenes are one class of important building blocks to construct molecular capsules as a result of their intrinsic bowl shape.2 Hydrogen bonds3 and metal-coordination bonds4 are two more widely employed tools in the construction of molecular capsules. Furthermore, the preparation of molecular capsules in aqueous solution based on ionic interaction is also very important for their biochemical applications.5

Sulfonated calixarenes, possessing three-dimensional, flexible, π-electron-rich cavities, have gained increasing attention in the past three decades due to their inclusion properties with numerous guests.6 Benefiting from the high affinity and selectivity for the complexation of sulfonated calixarene hosts with different kinds of guests in water,7 and also benefiting from their nontoxic character,8 sulfonated calixarenes have been popularly applied in many fields,9 of course including the preparation of solid-state molecular capsules because the complexation of sulfonated calixarenes with Phen was likely to result in the formation of a π-stacked motif.10 The obtained results showed that p-sulfonatocalix[4]arene (SC4A), p-sulfonatocalix[5]arene (SC5A), and p-sulfonatothiacalix[4]arene (STC4A) could all form solid-state molecular capsules with Phen at pH 1–2. However, these capsules could not be formed in a more acidic mother liquor of 1 M HCl. In other words, the acidity of the mother liquor is another important factor in the formation of a molecular capsule.

Herein, we wish to report the solid-state structures of three complexes of 5,6-dihydropyrazin[1,2,3,4-lmn][1,10]-phenanthroline-4,7-diium (DP2+) with sulfonated calixarene hosts (DP2+⊂SC4A, DP2+⊂STC4A, and DP2+⊂SC5A) at pH 1–2 (Scheme 1). The obtained results showed that DP2+ was immersed into the cavity of the sulfonated calixarene host in a slantwise degree with the aromatic moiety being included first. The cavity size of the sulfonated calixarene determined the slantwise degree of the guest in the host cavity, which also suggests that guest size and shape are important factors in the formation of a molecular capsule. In a previous study,11 we selected 1,10-phenanthrolinium ion (Phen) as a template to prepare molecular capsules with sulfonated calixarenes because the complexation of sulfonated calixarenes with Phen was likely to result in the formation of a π-stacked motif.12 The obtained results showed that p-sulfonatocalix[4]arene (SC4A), p-sulfonatocalix[5]arene (SC5A), and p-sulfonatothiacalix[4]arene (STC4A) could all form solid-state molecular capsules with Phen at pH 1–2. However, these capsules could not be formed in a more acidic mother liquor of 1 M HCl. In other words, the acidity of the mother liquor is another important factor in the formation of a molecular capsule.
governed whether the host−guest capsule could be formed in the solid state: capsule complexes DP2+⊂SC4A and DP2+⊂STC4A were formed at pH 1−2, whereas only the simple inclusion complex DP2+⊂SC5A was formed under the same condition. In other words, in this study, we found that the cavity size of the sulfonated calixarene host was also a governing factor in the construction of a molecular capsule. A host−guest solution study was further performed by using NMR spectroscopy and microcalorimetry at pH 2.0 in order to understand the factor of cavity size for constructing molecular capsules better.

■ RESULTS AND DISCUSSION

Solid-State Structures of DP2+⊂SC4A, DP2+⊂STC4A, and DP2+⊂SC5A. Single-crystal X-ray diffraction analyses supply quantitative information for the structures of host−guest complexes in the solid state. The three complexes of DP2+ with sulfonated calixarene hosts, DP2+⊂SC4A, DP2+⊂STC4A, and DP2+⊂SC5A, were all obtained in their monocrystalline forms at pH 1−2. All three complexes crystallized in the same triclinic space group P1. Among the three crystals, some sulfonate groups of hosts and several water molecules disordered at two or more positions. In all three crystal structures, only one DP2+ guest was immersed into the host cavity in the slantwise orientation with the aromatic moiety being included first, whereas the other DP2+ guests located in the crystal lattice as counterions.

In complex DP2+⊂SC4A (Figure 1), the aromatic moiety of DP2+ is captured into the cavity of SC4A via three C−H⋯π interactions (C62−H62⋯ring of C51−C56, 2.984(1) Å and 141.6(4)°; C64−H64⋯ring of C30−C35, 2.820(1) Å and 139.8(4)°; C65−H65⋯ring of C37−C42, 2.515(1) Å and 164.1(4)°) and two unconventional hydrogen bonds (C61⋯O32, 3.359(8) Å and 147.9(4)°; C66⋯O22, 3.515(8) Å and 132.8(4)°), whereas the methylene moieties are fixed at the upper rim of SC4A, captured by one sulfonate group via an unconventional hydrogen bond (C69⋯O26, 3.28(1) Å and 140.5(4)°).

In complex DP2+⊂STC4A (Figure 2), the aromatic moiety of DP2+ is immersed into the cavity of STC4A via three C−H⋯π interactions (C40−H40⋯ring of C13−C18, 2.591(1) Å and 157.0(1)°; C41−H41⋯ring of C7−C12, 2.902(1) Å and 119.2(1)°; C43−H43⋯ring of C1−C6, 2.553(1) Å and 153.2(1)°) and two unconventional hydrogen bonds (C39⋯O10, 3.083(1) Å and 141.4(1)°; C44⋯O22, 3.326(1) Å and 167.0(1)°). Compared to the accommodation of DP2+ in a lightly slantwise manner in complex DP2+⊂SC4A, the guest molecule is more slantways encapsulated into the cavity of STC4A. This structure difference can be ascribed to the replacement of bridging atoms from methylenes to sulfide linkages, which brings about a 15% enlargement of the cavity size and enables the host to accommodate most of the volume of the guest molecule. To accommodate the guest well, STC4A adopts a more distorted C2v symmetry conformation.
with S···S distances of trans sulfonate groups of 7.767(2) and 12.384(3) Å as compared with the S···S distances of 8.605(4) and 11.781(5) Å in DP2+⊂SC4A. Moreover, the actual φ and χ torsion angle values (degrees), which are used to define the solid-state conformation of calixarene according to the Ugozzoli–Andreotti convention,15 are 113.7(1), −81.3(1); 74.4(1), −99.9(1); 103.6(1), −77.0(1); 69.0(1), −109.3(1) for DP2+⊂CSTC4A and 96.9(6), −77.6(6); 77.9(7), −102.1(6); 102.0(6), −79.7(6); 75.6(6), −97.7(6) for DP2+⊂SC4A, respectively.

In complex DP2+⊂SC5A (Figure 3), the aromatic moiety of DP2+ is captured into the cavity of SC5A via two C–H···π interactions (C40–H40···ring of C15–C20, 2.528(1) Å and 155.8(3)°; C44–H44···ring of C29–C34, 3.191(1) Å and 126.7(4)°) and one unconventional hydrogen bond (C38···O11, 3.332(7) Å and 167.9(4)°), whereas the methylene moieties are fixed at the upper rim of SC5A, captured by one sulfonate group via an unconventional hydrogen bond (C46···O16, 3.200(6) Å and 123.7(3)°). Compared with the structure of DP2+⊂SC4A, we notice that DP2+ penetrates into the SC5A cavity to a deeper depth, which can be reflected from the distances between the nitrogen atoms of DP2+ and the planes of carbon atoms of methylenes in calixarenes. The distances involved in complex DP2+⊂SC5A are 5.449(4) and 6.654(4) Å, which are shorter than 5.771(5) and 7.696(5) Å involved in complex DP2+⊂SC4A. Owing to the deeper immersion of DP2+, the pinched symmetry can be observed in SC5A, as shown by the actual φ and χ torsion angle values (degrees): 94.6(4), −84.8(5); 45.4(5), −83.3(4); 110.1(4), −75.3(4); 65.6(5), −110.5(4); 89.2(4), −61.6(4). Moreover, compared with the slantwise degree of DP2+ in complex DP2+⊂CSTC4A, the guest molecule is further more slantways encapsulated into the cavity of SC5A, even close to a horizontal orientation. This structural distinction can be ascribed to the fact that the cavity of SC5A is wider: STC4A has a bowl shape, whereas SC5A can be regarded as a shallow-dish shape.

It is worth mentioning that, in the solid-state structures of DP2+⊂SC4A and DP2+⊂STC4A, face-to-face dimers are formed by the π···π stacking interaction of one bound DP2+ with another bound DP2+ molecule, which results in the formation of 2:2 bis-molecular capsules (Figure 4). However, in complex DP2+⊂CSTC4A, capsule formation is not possible as a consequence of the nearly horizontal orientation of DP2+ encapsulated into the cavity of SC5A. The orientation of a DP2+ guest in complex DP2+⊂CSTC4A cannot lead to the formation of a π···π dimer. Therefore, we can conclude that the π···π stacking interaction of DP2+···DP2+, which is governed by the slantwise degree of the guest in the host cavity, is the key factor in stabilizing these solid-state capsule structures. Essentially, the cavity size of sulfonated calixarene determines the slantwise degree of the guest in the host cavity and, as a result, governs the formation of capsules.

As a result of the different binding modes in complexes DP2+⊂CSTC4A, DP2+⊂CSTC4A, and DP2+⊂SC5A, the extended structures of these complexes are also different. For example, the packing structures of DP2+⊂CSTC4A and DP2+⊂SC5A have contorted bilayer arrangements as a result of the dominating forces of π···π interactions, whereas, in the extended structure of DP2+⊂SC5A, SC5A molecules arrange themselves in a typical up–down fashion to form a “zig-zag” bilayer arrangement (Figure 5).

Solution Investigations. A host–guest solution study was further performed by using NMR spectroscopy and microcalorimetry at pH 2.0 in order to understand the factor of cavity size for constructing molecular capsules better. 1H NMR spectroscopy is a powerful tool that can be used to determine the structure of a calixarene complex by analyzing complexation-induced chemical shift changes (Δδ) of guest protons.16 Herein, to obtain the binding modes of DP2+ with sulfonated calixarenes at pH 2.0, 1H NMR spectra of DP2+ in the absence and presence of these calixarene hosts were measured in pH 2.0 phosphate buffer solutions (Figure 6). The host and guest were mixed in a 1:1 stoichiometry at 10 mM because the Job’s plots showed that, in aqueous solution, sulfonated calixarenes also showed that, in aqueous solution, sulfonated calixarenes also formed 1:1 host–guest complexes with DP2+ (see the Supporting Information, Figure S1). As shown in Figure 6, all the protons of DP2+ exhibit visible upfield shifts owing to the ring current effect of the aromatic nuclei of calixarenes, indicating that the DP2+ guests are encapsulated into the calixarene cavities. Moreover, the DP2+ protons are observed as a single resonance because of fast exchange between a free guest and a complexed one on the NMR time scale. The corresponding chemical shift changes (Δδ) of DP2+ protons in the presence of approximately 1 equiv of hosts are listed in Table 1. The Δδ values differ from each other, which can be used to deduce the binding geometries of host–guest complexes because the proton with the largest Δδ value
would be affected mostly by the ring current effect of the aromatic nuclei of calixarenes. As can be seen from Table 1, upon complexation with SC4A at pH 2.0, the Δδ values of DP2+ protons are in the order of H3 ≈ H4 > H2 > H1 > H5, which indicates that DP2+ is immersed into the cavity of SC4A in a slantwise degree with the aromatic moiety being included first (Figure 7a). Upon complexation with SC5A at pH 2.0, the Δδ values of H3 and H4 in DP2+ are obviously larger than those upon complexation with SC4A, whereas the Δδ values of H1 and H2 in DP2+ are obviously smaller than those upon complexation with SC4A, which indicates that H3 and H4 portions of DP2+ are close to the aromatic nuclei of SC5A, whereas H1 and H2 portions of DP2+ are remote from the cavity of SC5A. Therefore, we rationally deduce that DP2+ is nearly horizontally encapsulated into the cavity of SC5A (Figure 7b). The 2D ROESY NMR spectrum of the SC5A +DP2+ complex at pH 2.0 was also performed to further identify its binding structure. As shown in Figure 8, the cross-peaks of H3 (C) and H4 (B) of DP2+ with the aromatic protons of calixarene are obviously stronger than those of H1 (D) and H5 (A), which strongly supports the deduced binding mode above.

Table 1. Chemical Shift Changes (Δδ, ppm) of DP2+ Protons in the Presence of SC4A and SC5A at pH 2.0

<table>
<thead>
<tr>
<th>Host</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>H5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC4A</td>
<td>−0.96</td>
<td>−1.41</td>
<td>−2.06</td>
<td>−2.05</td>
<td>−0.28</td>
</tr>
<tr>
<td>SC5A</td>
<td>−0.50</td>
<td>−0.74</td>
<td>−2.42</td>
<td>−2.38</td>
<td>−0.31</td>
</tr>
</tbody>
</table>

Δδ = δ(presence of 1 equiv of host) − δ(free guest). Negative values indicate upfield shift. bThe host and guest were mixed in a 1:1 stoichiometry at 10 mM.

Figure 5. Extended structures of DP2+⊂SC4A (a), DP2+⊂STC4A (b), and DP2+⊂SC5A (c).
Intermolecular Complexation of SC4A, SC5A, and STC4A with Phen and DP2+ in pH 2.0 Phosphate Buffer Solutions

The complexation of Phen with the three sulfonated calixarenes at pH 1.21 also show the accompanied enthalpy (ΔH°) changes. The obtained results are listed in Table 2 together with our previous thermodynamic results for the complexation of Phen with the three sulfonated calixarenes under the same conditions. All the stoichiometric ratios (N values) that we observed from curve-fitting results of the binding isotherm fell within the range of 0.90–1.10:1, which also clearly indicated that all the inclusion complexes had a 1:1 stoichiometry in aqueous solution.

Table 2. Complex Stability Values (Ks/M−1), Enthalpy (ΔH°/(kJ·mol−1)), and Entropy (TΔS°/(kJ·mol−1)) Changes for 1:1 Intermolecular Complexation of SC4A, SC5A, and STC4A with Phen and DP2+ in pH 2.0 Phosphate Buffer Solutions at 298.15 K

<table>
<thead>
<tr>
<th>Hosts</th>
<th>Guests</th>
<th>ΔH°</th>
<th>TΔS°</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC4A⁻</td>
<td>Phen</td>
<td>2.67 × 10⁷</td>
<td>−44.8</td>
</tr>
<tr>
<td>SC5A⁻</td>
<td>Phen</td>
<td>2.28 × 10⁷</td>
<td>−38.8</td>
</tr>
<tr>
<td>STC4A⁻</td>
<td>Phen</td>
<td>4.98 × 10⁷</td>
<td>−36.6</td>
</tr>
<tr>
<td>SC4A⁻</td>
<td>DP2⁺</td>
<td>(1.35 ± 0.01) × 10⁶</td>
<td>−40.5 ± 0.4</td>
</tr>
<tr>
<td>SC5A⁻</td>
<td>DP2⁺</td>
<td>(3.11 ± 0.02) × 10⁵</td>
<td>−35.8 ± 0.1</td>
</tr>
<tr>
<td>STC4A⁻</td>
<td>DP2⁺</td>
<td>(1.34 ± 0.01) × 10⁵</td>
<td>−34.8 ± 0.1</td>
</tr>
</tbody>
</table>

Ref 17.
the host cavity (SC5A > STC4A > SC4A). The more favorable electrostatic interactions between the three sulfonated calixarenes and DP2+ lead to a more favorable dehydration of \(\text{N}^{+} \) and \(\text{SO}_3^{-} \), which is more favorable for the entropy changes. As a result, the entropy changes for the complexation of DP2+ with SC4A, SC5A, and STC4A are relatively much more favorable than those for the complexation of Phen with the three sulfonated calixarenes. The cavity size of the sulfonated calixarene determines the slantwise degree of DP2+ in the host cavity, which also governs whether the host−guest capsule can be formed in the solid state: capsule complexes DP2+⊂SC4A and DP2+⊂STC4A are formed at pH 1−2, whereas only the simple inclusion complex DP2+⊂SC5A is formed under the same condition.

CONCLUSION

In summary, the molecular binding behaviors of SC4A, SC5A, and STC4A with DP2+ were systemically investigated at pH 1−2. In both aqueous solution and the solid state, DP2+ is immersed into the cavity of the sulfonated calixarene host in a slantwise degree with the aromatic moiety being included first. The cavity size of sulfonated calixarene determines the slantwise degree of the guest in the host cavity (SC5A > STC4A > SC4A), which also governs whether the host−guest capsule can be formed in the solid state: capsule complexes DP2+⊂SC5A and DP2+⊂STC4A are formed, whereas only the simple inclusion complex DP2+⊂SCSA is formed. Furthermore, all three sulfonated calixarene hosts show high affinities with DP2+ in the magnitude of \(10^{5}−10^{6} \text{ M}^{-1} \), which are much higher than those for the complexation of Phen with these hosts. The

Figure 9. "Net" heat effects of complexation of DP2+ with SC4A (a), SC5A (b), and STC4A (c) for each injection, obtained by subtracting the dilution heat from the reaction heat, which was fitted by computer simulation using the "one set of binding sites" model.
higher K_s values for the complexation of DP$^+$ with SC4A, SC5A, and STC4A are all driven by the entropy term due to a more favorable dehydration of N^+ and SO_3^- upon their electrostatic interactions. The present results will help us to understand the inclusion phenomena, recognition mechanisms, and thermodynamic origins of water-soluble sulfonated calixarenes more systematically and comprehensively. These observations also demonstrate unambiguously that the cavity size of the sulfonated calixarene is another important factor for the construction of molecular capsules.

EXPERIMENTAL SECTION

Materials

The three host molecules, p-sulfonatocalix[4]arene (SC4A), p-sulfonatocalix[5]arene (SC5A), and p-sulfonanothiacalix[4]arene (STC4A), and the guest, 5,6-dihydroproprazin[1,2,3,4-mim][[1,10]phenanthrolinc]-4,7-diiium (DP$^+$), were synthesized and purified according to previously reported procedures. These compounds were identified by 1H and 13C NMR spectroscopy in D$_2$O, performed on a Varian 300 spectrometer (see the Supporting Information, Figures S2–S9), and elemental analysis, performed on a PerkinElmer 2400C instrument (see the Supporting Information). All other chemicals were commercially available and used without further purification.

The phosphate buffer solution of pH 2.0 was prepared by dissolving sodium dihydrogen phosphate in distilled, deionized water to make a 0.1 M solution, which was then adjusted to pH 2.0 by phosphoric acid. The phosphate D$_2$O buffer solution of pH 2.0 was prepared by dissolving sodium dihydrogen phosphate (NaH$_2$PO$_4$, 0.2379 g) in 20.00 mL of D$_2$O to obtain a 0.1 M solution, which was then adjusted to pH 2.0 by DCl. The pH and D values of buffer solutions were verified on a Sartorius pp-20 pH meter calibrated with two standard buffer solutions. pH readings were converted to pH by adding 0.4 units.

Measurements

NMR Spectroscopy. 1H NMR and 2D ROESY (rotating frame Overhauser effect spectroscopy) spectra were recorded at pH 2.0 with a Varian Mercury VX300 spectrometer by using 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) as an external reference.

Isothermal Titration Calorimetry (ITC). A thermostated and fully automated VP-ITC instrument was calibrated before the titration experiment. Twenty-five successive injections were made for each titration experiment. A constant volume (10 μL) of guest (or host) solution (2.0 mM) in a 0.250 mL syringe was injected into the reaction cell (1.4227 mL) charged with host (or guest) in the same aqueous phosphate buffer solution of pH 2.0, followed by 1 M HCl dropwise. Consequently, the solution was heated until clear. After that, it was stirred for another 4 h at room temperature and filtered. The filtrate was placed to evaporate for several days. Then, the yellow crystal formed was collected along with its mother liquor for the X-ray crystallographic analysis (yield: 53%).

Preparation of Crystal of DP$^+$×SC4A. To an aqueous solution of SC4A (0.025 mmol, 10 mL) was added 2.5 equiv of DP$^+$. Precipitates were formed as the solution was stirred and adjusted to pH = 1–2 by adding 1 M HCl dropwise. Subsequently, the solution was heated until clear. After that, it was stirred for another 4 h at room temperature and filtered. The filtrate was placed to evaporate for several days. Then, the yellow crystal formed was collected along with its mother liquor for the X-ray crystallographic analysis (yield: 53%).

Preparation of Crystal of DP$^+$×STC4A. Crystal of DP$^+$×STC4A was obtained by hydrothermal synthesis. To an aqueous solution of STC4A (0.025 mmol, 10 mL) was added 2.5 equiv of DP$^+$. Precipitates were formed as the solution was stirred and adjusted to pH = 1–2 by adding 1 M HCl dropwise. Then, the mixture was suspended in a Teflon-lined stainless steel bomb. After the bomb was sealed, the system was heated at 120 °C under hydrothermal conditions for 2 days and then cooled gradually to room temperature at a rate of 2 °C/h. The yellow crystal formed was collected along with its mother liquor for the X-ray crystallographic analysis (yield: 62%).

Crystal Data. The X-ray intensity data for complexes DP$^+$×SC4A, DP$^+$×SC5A, and DP$^+$×STC4A were collected on a Rigaku MM-007 rotating anode diffractometer, equipped with a Saturn CCD area detector system, using monochromated Mo Kα radiation at T = 113(2) K. Data collection and reduction were performed by the Crystalclear program. The structures were solved by using a direct method and refined, employing full-matrix least-squares on F^2 (CrystalStructure, SHELXTL-97). X-ray structural data for DP$^+$×SC4A: C$_{63}$H$_{71}$N$_4$O$_{30.50}$S$_5$ ([SC$_{4A}5$]ff[DP$^+7$]): 11.75H$_2$O, M = 1368.88, triclinic, $a = 14.066(3)$ Å, $b = 17.611(4)$ Å, $c = 24.426(5)$ Å, $α = 98.68(3)$°, $β = 95.62(3)$°, $γ = 91.79(3)$°, space group $P1$, $Z = 4$, calculated density = 1.529 g/cm3, crystal dimensions (mm3): 0.18 × 0.16 × 0.12, $μ = 0.255$ mm$^{-1}$, $θ_{max} = 50.04°$, 32 851 measured reflections of which 20 247 were unique ($R_{int} = 0.0463$), final R indices $\{I/σ (I) > 2\}$: $R_1 = 0.1045$, $wR_2 = 0.2488$, R indices (all data): $R_1 = 0.1272$, $wR_2 = 0.2649$, GOF on F^2 = 1.052. X-ray structural data for DP$^+$×SC5A: C$_{52}$H$_{44}$N$_4$O$_{20}$S$_8$ ([SC$_{5A}4$]ff[DP$^+7$]): 10.50H$_2$O, M = 1532.54, triclinic, $a = 11.177(2)$ Å, $b = 14.903(3)$ Å, $c = 19.970(4)$ Å, $α = 95.73(3)$°, $β = 93.96(3)$°, $γ = 94.51(3)$°, space group $P11$, $Z = 2$, calculated density = 1.547 g/cm3, crystal dimensions (mm3): 0.20 × 0.10 × 0.07, $μ = 0.274$ mm$^{-1}$, $2θ_{max} = 0.04°$, 19 210 measured reflections of which 11 536 were unique ($R_{int} = 0.0336$), final R indices $\{I/σ (I) > 2\}$: $R_1 = 0.0734$, $wR_2 = 0.2053$, R indices (all data): $R_1 = 0.0864$, $wR_2 = 0.2187$, GOF on F^2 = 1.038. X-ray structural data for DP$^+$×STC4A: C$_{52}$H$_{44}$N$_4$O$_{20}$S$_8$ ([STC$_{4A}4$]ff[DP$^+7$]): 4H$_2$O, M = 1301.39, triclinic, $a = 12.354(3)$ Å, $b = 14.404(3)$ Å, $c = 16.103(3)$ Å, $α = 69.19(3)$°, $β = 82.76(3)$°, $γ = 94.51(3)$°, space group $P11$, $Z = 2$, calculated density = 1.627 g/cm3, crystal dimensions (mm3): 0.18 × 0.16 × 0.12, $μ = 0.422$ mm$^{-1}$, $2θ_{max} = 0.04°$, 15 397 measured reflections of which 9297 were unique ($R_{int} = 0.0580$), final R indices $\{I/σ (I) > 2\}$: $R_1 = 0.0436$, $wR_2 = 0.1247$, R indices (all data):