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Experimental Section

General Method. All chemicals were commercially available and were used without 

further purification unless noted otherwise. Compounds 1, 2 and 3 were synthesized 

according to the previous reports.1,2,3 The synthesis of 4,8-dimethoxy-naphthalene- 

1,5-disulfonate sodium (DNDS) was described in the following, and it was identified 

by NMR spectroscopy in D2O, performed on a Varian 400 spectrometer, mass 

spectrometry, performed on an IonSpec QFT-ESI MS, which were listed in Figures 

S1–S3, respectively. RPMI-1640 culture solution purchased Gibco company and the 

HGC-27 gastric cells were provided by Beijing tumor biology test center.

Preparation of stocks solution

A predetermined amount of 1, 2, 3 and α-CD were dissolved in aqueous phosphate-

buffered saline (PBS) buffer to gain 1 mM stock solutions. Corresponding bulk of the 

above stock solutions were mixed for each measurement. 

UV-Vis Spectra and Optical Transmittance

UV-Vis spectra and optical transmittance were recorded in a quartz cell (light path 10 

mm) on a Shimadzu UV-3600 spectrophotometer equipped with a PTC-348WI 

temperature controller.

TEM and SEM Experiments

TEM images were recorded on a Philips Tecnai G2 20S-TWIN microscope operating 

at an accelerating voltage of 200 keV. The sample for TEM measurements was 

prepared by dropping the solution onto a copper grid. The grid was then air-dried. 

SEM images were recorded on a Hitachi S-3500N scanning electron microscope. The 
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sample for SEM measurements was prepared by dropping the solution onto a 

coverslip, followed by evaporating the liquid in air.

Zeta Potential measurements

Zeta Potential experiment was carried out on a Zetasizer Nano ZS from Brookhaven 

Instruments equipped with a 10 mW HeNe laser at a wavelength of 633 nm. 

Synthesis of 4,8-dimethoxy-naphthalene-1,5-disulfonate sodium (DNDS). We 

have synthesized host 1 building subunit according our previous article.S1 The process 

of synthesis was as follows: 2.33 g (20.00 mmol) chlorosulfonic acid was added 

dropwise over a period of 2 h to a stirred solution of 1,5-dimethoxynaphthalene (0.38 

g, 2 mmol) in dry 150 mL CHCl3 at -5 °C.After additional 4 h reaction at -5 °C, a 

white precipitate was obtained. The precipitate was carefully collected by filtration 

and washed with 50 mL dry CHCl3 at once. The residue was taken up into 100 mL 

H2O, and 5% NaOH solution was added until pH = 7. The solvate was envapoured 

and the residue was recrystallized from acetonitrile-acetone for three times and dried 

by vacuum, the target compound was obtained as white solid (731 mg, 91%).
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Fig. S1. 1H NMR spectrum (400 MHz, D2O, 25 °C) of DNDS.

Fig. S2. 13C NMR spectrum (100 MHz, D2O, 25 °C) of DNDS.
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Fig. S3. ESI-HRMS spectrum of DNDS.

Fig. S4. 1H ROESY spectrum of [2]pseudorotaxane 21 in D2O at 25 °C.
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Fig. S5. Job’s plot of [2]pseudorotaxane 21 at total concentration of 0.01 mM at 25 

°C.

Fig. S6. ESI-MS spectrum of [2]pseudorotaxane 21. The peak at m/z 602.1632 is 

assigned to [1 + 2]2−, calcd.: 602.1624.
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Fig. S7. UV-Vis absorption spectra (a) and optical transmittance (b) of host 1 at 

different concentrations (from 0.01 mM to 0.15 mM) at 25 °C in water. Inset: 

dependence of (a) the absorbance at 321 nm and (b) optical transmittance at 450 nm 

on 1 concentration, respectively.

Fig. S8. UV-Vis absorption spectra (a) and optical transmittance (b) of guest 2 at 

different concentrations from 0.01 mM to 0.15 mM at 25 °C. Inset: dependence of the 

absorption at 261 nm (a) and optical transmittance at 450 nm on 2 concentration, 

respectively.

It should be noted that there was no obvious changes at longer wavelength region, and 

good linear relationship between absorbance or optical transmittance and the 1/2 

concentration from 0.01 to 0.15 mM, indicating that free 1/2 was without any self-
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aggregation behaviors under the concentration conditions.

Fig. S9. (a) Dependence of the optical transmittance at 25 °C on 2 concentration in 

the presence of 0.1 mM 1; (b) The corresponding CAC was determined to be 0.1 mM.

Fig. S10. Optical transmittance of 1, 2, 1 + 2 and 2 + DNDS at 25 °C in water; [1] = 

0.1 mM, [2] = 0.1 mM, [DNDS] = 0.20 mM, respectively.
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Fig. S11. Zeta Potential of [2]pseudorotaxane 21 nanorods, [1] = [2] = 0.1 mM.
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Fig. S12. 1H ROESY spectrum of [3]pseudorotaxane 21·α-CD in D2O at 25 °C.

Fig. S13. ESI-MS spectrum of [3]pseudorotaxane 21·α-CD. The peak at m/z 602.27 

is assigned to [1 + 2]2−, calcd.: 602.16; the peak at m/z 1088.33 is assigned to [1 + 2 + 

α-CD]2−, calcd.: 1088.32.
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Fig. S14. TEM image of [2]pseudorotaxane 21 aggregates in the presence of excess 

-CD, [1] = [2] = 0.1 mM, [-CD] = 0.5 mM.

Fig. S15. (a) Absorption spectra of 3α-CD in water after UV irradiation at 365 nm, 

Inset: Absorbance changes at 333 nm versus irradiation time. (b) Cycling of the 

photo-mediated trans and cis isomerization of 3α-CD ([3] = [α-CD] = 0.05 mM) by 

alternate irradiation with UV and visible light at 25 ºC.
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Fig. S16. Circular dichroism changes of mixture solution of 3 + α-CD upon alternate 

irradiation with UV and visible light. Inset: Cycling of the photo-mediated trans and 

cis isomerization of 3 in the mixture ([3] = [α-CD] = 0.1 mM, 25 ºC, respectively).

Fig. S17. Circular dichroism spectra of different components of 1 + 2, 2 + α-CD, 1 + 

α-CD, 1 + 2 + α-CD, 3 + α-CD and four-components mixture of 1 + 2 + α-CD + 3, ([1] 

= [2] = [α-CD] = 0.1 mM, [3] = 0.5 mM, 25 ºC, respectively).
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Fig. S18. TEM images of (a) α-CD + 3, (b) 1 + α-CD + 3, (c) 1 + α-CD. [1] = 0.1 mM, 

[α-CD] = 0.2 mM, [3] = 0.3 mM, respectively).

Fig. S19. (a) Absorption spectra of a four-components mixture of [3]pseudorotaxane 

21·α-CD + 3 after UV irradiation at 365 nm, Inset: Absorbance changes at 326 nm 

versus irradiation time. (b) Cycling of the photo-mediated trans and cis isomerization 

of the quaternary mixture ([1] = [α-CD] = 0.05 mM) by alternate irradiation with UV 

and visible light at 25 ºC, ([1] = [2] = [-CD] = [3] = 0.05 mM, respectively).
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Fig. S20. Circular dichroism changes of the four-components mixture of 

[3]pseudorotaxane 21·α-CD + 3 upon alternate irradiation with UV and visible light. 

Inset: Cycling of the photo-mediated trans and cis isomerization of 3 in the 

quaternary mixture ([1] = [2] = [α-CD] = 0.1 mM, [3] = 0.5 mM, 25 ºC, respectively).

Generally, azobenzene isomerizes to predominantly trans and cis forms under visible 

(Vis) and ultraviolet (UV) light, respectively.4 According to previous reports,5 we can 

conclude that the photoisomerization of azophenyl unit is a crucial factor to govern 

the formation and dissociation of inclusion complex between azobenzene and α-CD. 

The 1H NMR of 1 + 2 + 3 + α-CD after UV irradiation in Fig. 3f (in the text), the Fig. 

S17, Fig. S19 & S20 jointly indicate the reversibility of the azobenzene 

photoisomerization in four-components solution, along with the transfer of α-CD from 

3α-CD to amphiphilic [2]pseudorotaxane 21. As a result, owing to the formation 

and dissociation of inclusion complex 3α-CD, a reversible conformational change in 

the transition from amphiphilic [2]pseudorotaxane 21 to water-soluble 
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[3]pseudorotaxane 21-CD can be operated by the azobenzene photoisomerization. 

Combining these spectroscopic, NMR (Fig. 3f) of four-components system after UV 

irradiation and microscopic investigation results, we can speculate the reversibility of 

the assembly and disassembly processes was driven by the azobenzene 

photoisomerization in four-components solution.
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