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ABSTRACT: β-Cyclodextrin modified camptothecin (CPT−CD)
was synthesized through esterification reaction and “click chemistry”
to greatly improve the solubility of CPT in aqueous solution, and
then, a supramolecular nanoparticle was constructed by strong
noncovalent interaction between β-cyclodextrin and adamantane
and amphiphilic interaction by simply mixing CPT−CD and
adamantane modified hyaluronic acid (HA−ADA) together. The
obtained nanoparticle had a hydrophilic HA shell, which could
target and recognize HA receptors overexpressed on the surface
of cancer cells, and a hydrophobic CPT core, which could protect
CPT from hydrolyzation. The results of cytotoxicity experiments
showed that the nanoparticle we have designed in this work
exhibited similar anticancer activities to, but with much lower side
effects than, the commercial chemotherapeutic drug CPT in vitro.
We believe that this work might provide a strategy for improving the treatment performance of CPT in laboratory and clinical
settings.

The construction of complicated supramolecular nano-
structures composed of micromolecules, polymers, or

inorganic materials by simple noncovalent interactions has
become a research hot-spot in recent decades,1,2 most of the
nanostructures having wide application prospects in numerous
research fields, such as medicinal chemistry, material chemistry,
catalytic chemistry, biochemistry, and so on.3−5 In addition,
the design and construction of novel targeting drug-delivery
systems was recently begun. These systems exhibited satis-
factory tumor inhibition effects and low side effects in vitro
and in vivo,6−10 overcoming the shortcomings of the traditional
chemotherapeutic anticancer drugs with low aqueous solubility
and high physical toxicity, which drew the broad attention of
biochemists and medicinal scientists. For an advanced drug-
delivery carrier, good aqueous solubility, synthetic convenience,
high binding capability with anticancer drugs, good biocompat-
ibility, biodegradability for drug release, and targeting effects
determined the therapeutic efficiency of the drug-delivery
system.11 Currently, a variety of supramolecular drug-delivery
systems with multitreatment based on inorganic nanopar-
ticles,12,13 supramolecular organic frames,14−18 carbon nano-
materials,19−22 micelles and vesicles,23−28 and so on were
tactfully designed and constructed, and they exhibited exciting
cancer treatment effects. However, the interminable synthetic
routes of the drug carrier, the low loading efficiency, the low
aqueous solubility, and inactivation of the loaded anticancer
drugs were still problems for the further clinical application of

the targeting drug-delivery systems. Therefore, the clever
design and careful choice of the carrier’s materials and loaded
drug became the emphasis for the novel advanced drug-delivery
system.29,30

Among various drug carrier materials, hyaluronic acid (HA),
a sort of polysaccharide with excellent aqueous solubility, bio-
compatibility, biodegradability by hyaluronidase, facile modifi-
cation, and targeting capability toward HA receptors (CD44
and RHAMM receptors) overexpressed on the surface of
malignant cancer cells, became a new generation of building
blocks for nanosized particle construction for drug and gene
delivery and cancer diagnosis.31−36 For instance, Zhang, Huang,
Dong, and co-workers37 synthesized diiodostyryl bodipy
conjugated hyaluronic acid, and this compound could self-
assemble to form nanoparticles, which could target and assist in
the diagnosis of tumors and suppress tumor growth effectively
in photodynamic therapy way in vitro and in vivo. Our group38

combined β-cyclodextrin modified hyaluronic acid, adaman-
tane-bis(diamine) conjugate, and cucurbit[6]uril (CB[6]) togeth-
er to construct triple-component nanoparticles, and the addition
of CB[6] could protonate the diamine groups in adamantane-
bis(diamine) conjugate effectively, which could bind and deliver
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negative charged siRNA into cancer cells to interrupt the
expression of specific protein.
In this work, we utilized the reported adamantane modified

HA (HA−ADA) as drug carrier and then synthesized the
β-cyclodextrin modified camptothecin (CPT−CD) to improve
the aqueous solubility of CPT. When the HA−ADA and
CPT−CD were mixed together, taking advantage of the strong
noncovalent interaction between adamantane and β-cyclo-
dextrin and the supramolecular amphiphilic interaction, we
obtained a kind of nanoparticle (HACPTPs), and the
HACPTPs had hydrophilic HA shells, which could recognize
HA receptors overexpressed on the surface of cancer cells,
and hydrophobic CPT core, which could protect CPT from
hydrolysis against water; this might result in the inactivation of
CPT. The construction process of HACPTPs was illustrated in
Scheme 1. In addition, the obtained nanoparticles HACPTPs
exhibited similar cancer cell inhibition effects to that of
commercial CPT but much lower cytotoxicity than that of
CPT toward normal cells. This work might provide a protocol
for solving the insoluble and untargeting problems of CPT.
The synthetic routes of CPT−CD was illustrated in Figure S1.

Alkynyl group was first appended onto CPT molecule by
esterification reaction of CPT with 10-undecynoic acid, and
then the 6-deoxy-6-azido-β-CD was connected with CPT by
“click chemistry” in 63% yield. As shown in Figure S5, a typical
proton signal of triazole ring appeared at 8.7 ppm, and the
proton signals assigned to β-CD also showed around 3−4,
4.5, 4.8, and 5.5 ppm, which together verified the successful
connection of β-CD with CPT. After that, the CPT−CD
exhibited satisfactory aqueous solubility, which was measured as
3 mM in PBS containing 3% DMSO, which was much higher
than that of CPT as 6 μM in water,39 and the greatly improved
aqueous solubility would facilitate the anticancer activity of
CPT−CD in vitro and in vivo.

However, HA−ADA was prepared according to our previous
work,40 and the degree of substitution of HA−ADA was
calculated as 13%, indicating that adamantane groups were
grafting onto the backbone of HA every 7.7 repeating sugar
units on average. This would not impede the targeting effects of
HA toward CD44 and RHAMM receptors overexpressed on
the surface of the cancer cells; these required at least six
successive sugar units as one targeting section.41

To investigate the complexation behavior between CPT−CD
and HA−ADA, we employed a synthetic intermediate ADA-
EDA as a reference guest for 1H NMR titration. As shown in
Figure 1a, when the concentration of CPT−CD increased from
0 to 3.0 mM, the proton signals of ADA-EDA (0.5 mM) shifted
downfield gradually accompanying shape changes, which
indicated that the inclusion of ADA into the cavity of CPT−
CD.11,42 Moreover, by analyzing the nonlinear least-squares fit
of the titration data (Figure 1b), the binding constant (KS)
between ADA−EDA and the β-CD cavity of CPT−CD was
calculated as (1.8 ± 0.2) × 103 M−1. In addition, the stoi-
chiometry between ADA-EDA and CPT−CD was determined
as 1:1 according to the Job’s plot in which the maximum was
observed at a molar fraction of 0.5 (Figure S9).
Taking advantage of the satisfactory interactions between

adamantane and β-CD, a supramolecular nanoparticle (HACPTPs)
composed of CPT−CD and HA−ADA was successfully
constructed by simply mixing the two components mentioned
above. The size and morphology of the nanoparticles were
characterized by atomic force microscope (AFM), high-
resolution transmission electron microscope (HR-TEM),
dynamic light scattering (DLS), and ζ potential experiments.
As shown in Figure 2a, a series of collapsed nanoparticles with
spherical shape were observed in a typical AFM image, and the
height of the nanoparticle was measured as 7.3 nm, which was
basically equal to the sum of the values of two HA backbones

Scheme 1. Construction of HACPTPs nanoparticles
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(ca. 1.8 nm), two cyclodextrins (ca. 1.7 nm), and two CPT
molecules with hydrophobic undecynoic chain (ca. 4.0 nm).
The HR-TEM image (Figure 2b) also showed the homoge-
neous spherical nanoparticles whose diameters distributed from
70 to 90 nm, and these nanoparticles tended to self-aggregate
due to the hydrogen-bonding interaction among the HA

hydrophilic shell of the HACPTPs nanoparticles. Moreover,
the results of DLS experiments (Figure 2c) exhibited the
hydrodynamic diameter of HACPTPs as ca. 118 nm, which was
very close to the result of HR-TEM image (70−90 nm) and
much larger than the hydrodynamic diameter of CPT−CD,
ca. 80 nm (Figure S10), indicating the formation of the
nanoparticles. Furthermore, the DLS results at different
scattering angles showed that the gyration (Rg) and hydro-
dynamic (Rh) radii of HACPTPs were determined as 61.1 and
91.6 nm, respectively (Figures S11 and S12). Thus, the Rg/Rh
value was calculated as 0.67, which was less than 0.78
(corresponding to the solid micellar nanoparticles), suggesting
that the HACPTPs were micelles with core−shell structures, as
illustrated in Scheme 1.43 However, the surficial charge of
HACPTPs was determined by ζ potential experiments. As
shown in Figure 2d, the HACPTPs showed a typical surficial
negative charge as ca. −24 mV due to the negative charged
hydrophilic HA shell of the nanoparticle, and this negative
charged surface would facilitate the stability, dispersibility, and
biocompatibility of HACPTPs in biological environments
and prolong the circulation time in vivo.11,44 The control
experiment showed that the CPT−CD was uncharged at the
surface, and the ζ potential was measured as ca. −0.04 mV
(Figure S13).
Furthermore, the successful construction of HACPTPs

nanoparticles could be also distinguished by naked eyes. As
shown in Figure S14a, HACPTP nanoparticles could exist as
steady and transparent aqueous solution and exhibited much
more obvious Tyndall effects than did the HA−ADA polymer,
which meant the formation of nanoscaled particles. Moreover,
after dialysis against deionized water, the HACPTPs nano-
particles in PBS still emitted typical blue fluorescence of CPT,
and no precipitation was observed (Figure S14b), which further
proved the formation and stability of the HACPTPs nano-
particles.
Next, we performed cytotoxicity experiments to evaluate the

anticancer activities of HACPTPs nanoparticles. As shown in
Figure 3a, CPT dissolved in DMSO exhibited satisfactory
malignant cell inhibition effect toward HA receptor positive
HCT-116 human colon cancer cells, whose relative cellular
viability was measured as 22%. After the grafting of β-CD, the
CPT−CD showed remarkable aqueous solubility; however, the
relative viability of cancer cells was 35%, which was little higher
than that of CPT, which might be attributed to the slight
anticancer activity decline caused by the modification of CPT
by β-CD. However, after forming supramolecular nanoparticles
between CPT−CD and HA−ADA, the obtained HACPTPs
exhibited similar anticancer activity to that of CPT, and the
relative cellular activity was obtained as 22%. However, after
adding an excess of 10 equiv of HA, the cancer cell inhibition of
HACPTPs decreased distinctly, and the relative cellular viability
was measured as 55%. This phenomenon indicated that the
interaction of HA and the HA receptor plays an important role
in the internalization of HACPTPs into cancer cells.
Moreover, the side effects of HACPTPs was also evaluated

by using HA receptor negative NIH3T3 mouse embryonic
fibroblasts. As shown in Figure 3b, both CPT and CPT−CD
exhibited cellular damage effect and gave relative cellular
viabilities of 17% and 38%, respectively. Due to the lack of HA
receptor on the surface of normal cells, HACPTP nanoparticles
could be hardly internalized into cytoplasm of NIH3T3 cells
and showed the high cellular viability as 86%. Furthermore, the
carrier HA−ADA showed no cytotoxicity to both of cancer cells

Figure 1. 1H NMR titration of ADA-EDA with CPT−CD. (a) 1H
NMR spectra of ADA-EDA (0.5 mM) upon the addition of 0, 0.1, 0.3,
0.5, 0.8, 1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.5, and 3.0 mM CPT−CD
(spectrum 1 to 13) in D2O containing 3% DMSO-d6 at 25 °C.
(b) Nonlinear least-squares fit of the chemical-shift changes of the
ADA-EDA peaks at δ = 1.86 ppm as a function of the concentration of
CPT−CD.

Figure 2. Typical (a) AFM and (b) HR-TEM images of HACPTPs
and (c) DLS and (d) ζ potential experimental results of HACPTPs in
PBS.
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and normal cells, and the results of cytotoxicity experiments in
48 h (Figure S15) were basically consistent with the ones in
24 h. Finally, by these phenomenon, we could deduce that the
HACPTPs could enter into cancer cells via the HA receptor
mediated endocytosis effect and showed a similar anticancer
effect with commercial CPT but much lower side effects in
normal cells compared to those for CPT.
In conclusion, we successfully synthesized the β-CD-modified

CPT through esterification and “click chemistry”, and the
compound exhibited satisfactory aqueous solubility to solve the
problem of insolubility of CPT in most of organic and aqueous
solvents. Next, by taking advantage of the strong supramolecular
interactions between β-CD and adamantane, supramolecular
nanoparticle HACPTPs composed of CPT−CD and HA−ADA
was constructed by host−guest interaction and amphiphilic
interaction. The obtained HACPTPs had a hydrophilic and
biocompatible HA shell, which could recognize and target HA
receptor overexpressed cancer cells, and a hydrophobic CPT
core, which could prevent CPT from hydrolysis and then
inactivation. Finally, the results of cytotoxicity experiments
proved that HACPTPs could be internalized into cancer cells by
HA receptor mediated endocytosis and exhibited similar anti-
cancer effects with but much lower side effects than commercial
CPT. This work might provide a novel strategy, through which,
due to simple and high-yield chemical modification and the
convenient supramolecular assembly method, the insoluble
chemotherapeutic agents could be loaded into aqueous nano-
particles or nanoplatforms with cancer cell-targeting capability
and biodegradability. This might tremendously increase the
anticancer activity and decrease the side effects of the anticancer
drugs.
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