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attracted increasing interest, and a variety 
of supramolecular artificial light-har-
vesting systems, including dendrimers,[7] 
organogels,[8] multiporphyrin arrays,[9] 
biomaterials,[10] and organic–inorganic 
hybrid materials,[11] have been constructed 
via noncovalent assembly. However, most 
of these artificial light-harvesting systems 
have performed in organic solvents due 
to the intrinsic hydrophobic effect and the 
undesired aggregation-caused quenching 
(ACQ) effect of organic chromophores 
in water. As a result, the fabrication of a 

highly efficient light-harvesting system in an aqueous solution 
is still a challenge.

In this work, we report a novel and highly efficient aqueous 
light-harvesting system constructed from the noncovalent 
supramolecular assembly of an oligo(phenylenevinylene) deriv-
ative (OPV-I), sulfato-β-cyclodextrin (SCD), and nile red (NiR) 
(Scheme 1). There are several advantages of this system: 1) at a 
high concentration, OPV-I possesses good aggregation-induced 
emission (AIE) properties, but does not display the ACQ effect, 
which enables OPV-I to act as a good donor; 2) SCD greatly 
lowers the critical aggregation concentration (CAC) of OPV-I, 
improving the AIE properties of OPV-I and enabling good 
water solubility of the resultant light-harvesting system; and  
3) the hydrophobic dye NiR is loaded in the hydrophobic layer 
of the OPV-I/SCD nanoparticles and acts as a good acceptor. 
As a result, the obtained OPV-I/SCD/NiR system shows a high 
antenna effect, energy-transfer efficiency, and donor/acceptor 
ratio, and the antenna effect occurs with a trace amount of 
acceptor (donor/acceptor ratio = 1500:1).

SCD was commercially available, and OPV-I was obtained in 
82% yield (Figures S1–S6, Supporting Information). The sol-
vent-dependent aggregation behavior of OPV-I was investigated 
by fluorescence spectroscopy. As shown in Figure 1a, when the 
water content was less than 80%, the solution of OPV-I barely 
fluoresced, and its fluorescence spectra were nearly unchanged, 
indicating that no self-aggregation of OPV-I occurred. How-
ever, with an increasing volume fraction of water from 80 to 
100 vol% (Figure 1b), the fluorescence intensity of OPV-I 
greatly enhanced, accompanied by an obvious bathochromic 
shift of the emission maximum, from 450 to 540 nm. In an 
aqueous solution, OPV-I emitted strong yellow fluorescence 
when excited at 365 nm, owing to the AIE of OPV-I.[12]

With the addition of SCD, the fluorescence intensity of 
OPV-I increased 3.7 times (Figure S9, Supporting Informa-
tion), and the fluorescence enhancement was clearly observed 
by the naked eye (Figure 2). In control experiments, the fluo-
rescence of OPV-I was moderately enhanced (1.6 times) with 

An efficient artificial light-harvesting system is fabricated from a cyclic poly-
saccharide, sulfato-β-cyclodextrin (SCD); an aggregation-induced emission 
molecule, an oligo(phenylenevinylene) derivative (OPV-I); and a fluorescent 
dye, nile red (NiR), via noncovalent interactions in an aqueous solution. In 
this system, the OPV-I/SCD supramolecular assembly acts as a donor, and 
NiR that is loaded into the OPV-I/SCD assembly acts as an acceptor. Signifi-
cantly, an efficient energy-transfer process occurs between the OPV-I/SCD 
assembly and the loaded NiR, leading to an extremely high antenna effect.

Light Harvesting

In natural photosynthesis, green plants and some photo-
synthetic bacteria capture, transfer, and store solar energy effec-
tively to achieve photosynthesis.[1] Within these light-harvesting 
organisms, light is absorbed by a pigment–protein complex 
consisting of a dense array of chlorophyll molecules. Then, a 
photoinduced energy migration occurs among the chlorophyll 
molecules and, subsequently, the excitation energy is trans-
ferred to the reaction center, where light energy turns into 
chemical energy.[2] One of the most remarkable features of nat-
ural light-harvesting systems is their densely packed antenna 
chromophores. Generally, over 200 antenna chromophores 
(donor) absorb light energy and transfer it to an acceptor at 
the reaction center.[3] Recently, considerable efforts have been 
devoted to mimic natural light-harvesting processes by real-
izing efficient and rapid energy transfer from a donor to an 
acceptor through a light-induced Förster resonance energy-
transfer (FRET) process.[4] For this purpose, two necessary fac-
tors should be taken into consideration: 1) the donor should be 
densely packed without a significant self-quenching effect, and 
2) the donor/acceptor ratio should be relatively high. These fac-
tors can minimize energy loss and transfer excitation energy 
with a high efficiency.[3–6] Actually, green plants usually form 
chlorophyll–protein complexes via noncovalent interactions 
to perform photosynthesis. Therefore, noncovalent assem-
blies with high photoinduced energy-transfer efficiencies have 
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the addition of another anionic macrocyclic molecule, p-sulfon-
atocalix[4]arene (SC4A), but was nearly unchanged or slightly 
quenched with the addition of a neutral macrocyclic molecule, 
such as native β-CD or cucurbit[7]uril (CB[7]). It is well docu-
mented that sulfonatocalixarenes can promote the self-aggre-
gation of aromatic or amphiphilic molecules by lowering the 
CAC, enhancing the aggregate stability and compactness,  

and regulating the degree of order in the aggregates. This 
unique self-assembly strategy is called calixarene-induced 
aggregation.[13] Therefore, we deduced that the enhanced fluo-
rescence of the OPV-I/SCD system is mainly attributed to the 
SCD-induced aggregation of OPV-I, which consequently led 
to the aggregation-induced emission enhancement (AIEE) of 
OPV-I, but without the inclusion of OPV-I into the SCD cavity. 
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Scheme 1. Construction of the light-harvesting system.

Figure 1. a) Fluorescence emission spectra of OPV-I (0.03 × 10−3 m) in Tetrahydrofuran(THF)/H2O (λex = 365 nm). b) Fluorescence intensity of OPV-I 
at 540 nm with various fractions of water from 10 to 100 vol%. Inset: photographs of OPV-I (0.03 × 10−3 m) in THF:H2O = 9:1 (left) and in water (right) 
under UV light (365 nm).
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Additionally, electrostatic interactions between the host and 
guest may play an important role. Because the negative charge 
density of SCD was higher than that of SC4A, the OPV-I/SCD 
system displayed a higher induced aggregation ability and 
larger fluorescence enhancement.

The induced aggregation behavior of SCD toward OPV-I was 
qualitatively and quantitatively investigated by optical transmit-
tance, Tyndall effect, zeta potential, dynamic light scattering 
(DLS), transmission electron microscopy (TEM), and scanning 
electron microscopy (SEM) measurements. Without SCD, the 
CAC of OPV-I was 0.12 × 10−3 m (Figure S12, Supporting Infor-
mation). In the presence of SCD, the optical transmittance (at 
500 nm) of OPV-I decreased owing to the formation of a large 
supramolecular assembly (Figure S13, Supporting Informa-
tion), and an inflection point at 0.025 × 10−3 m was observed 
on the plot of optical transmittance at 500 nm versus the con-
centration of OPV-I, corresponding to a CAC value for OPV-I 
of 0.025 × 10−3 m in the presence of SCD. This means that the 
CAC value of OPV-I decreased 4.8 times with the addition of 
SCD. Moreover, the preferable mixing ratio between SCD and 
OPV-I was also determined. By gradually adding SCD to an 
OPV-I solution at a fixed concentration of 0.042 × 10−3 m, the 
optical transmittance of the OPV-I/SCD solution at 500 nm 
decreased rapidly and then gradually increased thereafter to a 
quasiplateau, and the minimum was reached at a SCD concen-
tration of 0.007 × 10−3 m (Figure S14, Supporting Information). 
The rapid decrease of the optical transmittance indicated that 
a large aggregate formed between OPV-I and SCD. Then, the 
addition of an excess amount of SCD led to the formation of a 
simple inclusion complex accompanied by the disassembly of 
the aggregate, resulting in an increase in the optical transmit-
tance.[14] As a result, the preferable molar ratio for the supra-
molecular assembly was SCD:OPV-I = 1:6. Moreover, a similar 
phenomenon was also observed in the SC4A/OPV-I system, 
and the CAC value of OPV-I was 0.03 × 10−3 m in the presence 
of SC4A (Figure S15, Supporting Information), accompanied 

by a preferable molar ratio of SC4A/OPV-I of 1:2 (Figure S16, 
Supporting Information). However, the optical transmittance 
of CB[7]/OPV-I at 500 nm showed no appreciable changes 
(Figure S17, Supporting Information). These results further 
confirmed that SCD displayed the highest induced aggrega-
tion ability toward OPV-I among the examined macrocyclic 
molecules.

In addition, a simple mixture of SCD with OPV-I 
(molar ratio = 1:6) in an aqueous solution exhibited an obvious 
Tyndall effect (Figure S19, Supporting Information), indicating 
the formation of large aggregates. In control experiments, nei-
ther SCD nor OPV-I exhibited a Tyndall effect, revealing that 
both SCD and OPV-I did not form large self-aggregates under the 
same conditions. The DLS results illustrated the existence of large 
aggregates of OPV-I/SCD with an average diameter of ≈147 nm,  
accompanied by a narrow size distribution (Figure 3b). The 
TEM and SEM images showed several spherical nanoparti-
cles with diameters ranging from 50 to 150 nm (Figure 3c,d). 
There was no critical evidence to prove that the inside of these 
spheres was hollow or solid; thus, we classified them as a type 
of nanoparticle. A possible rationale for the multilayer structure 
may be as follows: free OPV-I molecules cannot form a large 
self-aggregate. Upon the addition of SCD, one SCD and several 
OPV-I form a complex. Subsequently, various complexes inte-
grate together to form a large multilayer aggregate that curves 
to generate a multilayer sphere with alternating shell structure. 
The resulting aggregates were simultaneously stabilized by 
several noncovalent interactions, including host–guest, electro-
static, and π–π interactions, and the synergetic contribution of 
these noncovalent interactions endowed the OPV-I molecules 
with good aggregation stability, short aggregation distance, and 
a high-order degree of aggregation. It is noteworthy that, since 
SCD existed as a mixture of CDs randomly substituted by sul-
fonate groups with an average degree of substitution of 12, the 
resultant OPV-I/SCD nanoparticles were inhomogeneous to 
some extent. Zeta potential measurements gave an average zeta 
potential of the OPV-I/SCD assembly of −18.65 mV (Figure 3a), 
indicating that the surfaces of the nanoparticles were negatively 
charged.

It is reasonable to expect that the OPV-I/SCD assembly can 
load a model substrate within the interior of the nanoparticles. 
NiR, a dye molecule showing strong fluorescence in hydro-
phobic environments, was selected as a model substrate to con-
struct a supramolecular triad light-harvesting system owing to 
the following advantages: 1) the absorption band of NiR well 
overlapped with the fluorescence emission of the OPV-I/SCD 
assembly (Figure 4a), which is favorable for the FRET pro-
cess (Figure S20, Supporting Information), and 2) because the 
binding between NiR and the CD cavity was very weak,[15] a 
small amount of NiR could be loaded into the hydrophobic layer 
of the OPV-I/SCD assembly rather than encapsulated in the 
cavity of SCD. As shown in Figure 4b, with the gradual addition 
of NiR to the OPV-I/SCD assembly, the fluorescence of OPV-I/
SCD (donor) decreased, but the fluorescence emission of NiR 
(acceptor) increased when excited at 365 nm. The bright-red flu-
orescence assigned to the emission of NiR was readily observed 
by the naked eye even in the presence of a trace mount of NiR 
(donor/acceptor ratio up to 1500:1). In control experiments, the 
free NiR or the NiR/SCD mixture barely fluoresced under the 
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Figure 2. Fluorescence spectra of OPV-I with the addition of SCD, SC4A, 
and CB[7] in an aqueous solution (λex = 365 nm). Inset: photographs 
of a) OPV-I, b) OPV-I/SCD, c) OPV-I/SC4A, and d) OPV-I/CB[7] under 
UV light (365 nm) ([OPV-I] = 0.03 × 10−3 m, [SCD] = [SC4A] = [CB[7]] = 
0.015 × 10−3 m).
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same conditions (λex = 365 nm; Figure S21, Supporting Infor-
mation), and the fluorescence of free NiR was negligible, even 
upon excitation at 540 nm, compared with that of the OPV-I/
SCD/NiR triad assembly (Figure S24, Supporting Information). 
In addition, fluorescence lifetime experiments showed that 
the decay curve of OPV-I followed a double exponential decay 
with a fluorescence lifetime of τ1 = 2.00 ns and τ2 = 12.23 ns. 
We deduce that the longer fluorescence lifetime is assigned to 
OPV-I, and the shorter one is assigned to partly deprotonated 
OPV-I, as this lifetime was nearly unchanged, but its content 
increased upon increasing the pH. In the OPV-I/SCD system, 

these fluorescence lifetimes increased to τ1 = 3.57 ns and 
τ2 = 16.43 ns, indicating that both OPV-I and its partly depro-
tonated derivative participated in the assembly with SCD. How-
ever, in the case of the OPV-I/SCD/NiR triad, the fluorescence 
lifetimes decreased to τ1 = 2.75 ns and τ2 = 10.52 ns (Figure S25,  
Supporting Information). Such an obvious decrease of the 
fluorescence lifetime suggested an energy transfer from the 
donor to the acceptor.[5b] Therefore, these results jointly indi-
cated that NiR was loaded into the interior of the OPV-I/SCD 
assembly, and an energy transfer occurred between the OPV-I/
SCD assembly and the loaded NiR. Furthermore, the size 
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Figure 4. a) Normalized emission spectrum of OPV-I/SCD and absorption spectrum of NiR. b) Fluorescence spectra of OPV-I/SCD ([OPV-I] = 0.03 × 
10−3 m, [SCD] = 0.005 × 10−3 m) in water with different concentrations of NiR. The concentrations of NiR were 0.00, 0.2 × 10−7, 0.40 × 10−7, 0.60 × 10−7, 
0.8 × 10−7, 1.0 × 10−7, 1.2 × 10−7, 1.4 × 10−7, 1.6 × 10−7, 1.8 × 10−7, 2.0 × 10−7, and 2.4 × 10−7 m. Inset: 1) photographs of OPV-I/SCD, and 2) OPV-I/
SCD/NiR under UV light (365 nm) ([OPV-I] = 0.03 × 10−3 m, [SCD] = 0.005 × 10−3 m, [NiR] = 2.4 × 10−7 m).

Figure 3. a) Zeta potential of the OPV-I/SCD assembly in water. b) DLS of the OPV-I/SCD assembly in water. c) TEM and d) SEM images of the OPV-I/
SCD assembly.
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distribution and morphology of the OPV-I/SCD/NiR triad were 
similar to that of OPV-I/SCD through the DLS and TEM meas-
urements (Figure S22, Supporting Information).

It is also interesting to investigate the energy-transfer effi-
ciency and antenna effect of the OPV-I/SCD/NiR triad, as these 
parameters are very important to evaluate the light-harvesting 
ability of an artificial system.[5a] Through a simple calculation 
based on Figures S23 and S24 (Supporting Information), the 
energy-transfer efficiency (ΦET) was calculated as 72%, and 
the antenna effect was calculated to be 32.5 at a donor/acceptor 
ratio of 125:1. Significantly, this antenna effect value was much 
higher than the corresponding values of recently reported artifi-
cial light-harvesting systems in aqueous environments.[5]

In conclusion, an artificial light-harvesting system was con-
veniently constructed based on a supramolecular assembly 
strategy. The OPV-I/SCD supramolecular assembly was con-
veniently fabricated, and the fluorescence properties of OPV-I 
were improved from an enhanced AIE. Interestingly, by simply 
mixing the acceptor (NiR) with the OPV-I/SCD assembly, a 
highly efficient FRET process occurred between the OPV-I/
SCD assembly and NiR, leading to the in situ formation of an 
artificial light-harvesting system. Most importantly, this artifi-
cial light-harvesting system exhibited a very high antenna effect 
(up to 32.5) and donor/acceptor ratio (up to 125:1) that are sim-
ilar to a natural light-harvesting system. This highly effective 
aqueous light-harvesting system is very significant for mim-
icking artificial photosynthesis.
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