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Abstract: Traditional separation membranes used for dye removal often suffer from a trade-off
between separation efficiency and water permeability. Herein, we propose a facile approach to prepare
cyclodextrin-based high-flux nanofiber membranes by electrospinning and vapor-driven crosslinking
processes. The application of glutaraldehyde vapor for crosslinking hydroxypropyl-β-cyclodextrin
(HP-β-CD)/polyvinyl alcohol (PVA)/laponite electrospun membranes can build interconnected
structures and lead to the formation of a porous hierarchical layer. In addition, the incorporation of
inorganic salt, laponite, can alter the crosslinking process, resulting in membranes with improved
hydrophilicity and highly maintained electrospun nanofibrous morphology, which contributes to an
ultrafast water flux of 1.0 × 105 Lh−1m−2bar−1. Due to the synergetic effect of strong host–guest
interaction and electrostatic interaction, the membranes exhibit suitable rejection toward anionic
dyes with a high removal efficiency of >99% within a short time and achieve accurate separation for
cationic against anionic dyes, accompanied by suitable recyclability with >97% separation efficiency
after at least four separation–regenerations. The prepared membranes with remarkable separation
efficiency and ultrafast permeation properties might be a promising candidate for high-performance
membranes in water treatment.

Keywords: cyclodextrin; supramolecular adsorption; electrospinning; nanofibrous membranes;
ultrafast permeation

1. Introduction

Many synthetic organic dyes used in the food, cosmetics, leather, and textile industries
are mutagenic and carcinogenic [1,2]. Aquatic ecosystems and human health are seriously
threatened by the widespread release of dye effluents with the quick rise in industrial-
ization [3]. It is very important to find efficient dye removal techniques for wastewater
treatment. Numerous tactics, such as chemical oxidation [4], biological degradation [5],
and adsorption [6,7], have been thoroughly studied. Among these, membrane separation
technology has drawn more and more interest due to its affordability, convenience, and lack
of pollution [8]. As a result, great efforts are made to create high-performance membranes
that simultaneously have strong rejection and high flux [9,10].

β-cyclodextrin (β-CD), which is low-cost and sustainable, possesses the hydrophobic
cavity to form stable inclusion complexes with certain organic molecules through host–
guest interactions and is widely applied in pollutant adsorption [11–14]. In addition,
employing the main building block of the membranes, the intrinsic microporosity of β-CD
can achieve accurate separation through size exclusion and serve as an extra water transport
channel [15,16]. Peinemann et al. developed a method with per-6-amino-β-CDs instead
of diamine reacting with terephtaloyl chloride to form a cyclodextrin-based separation
layer by interfacial polymerization, which showed precise shape-selective permeability
and a water permeance of 20 Lm−2h−1bar−1 [17]. However, these CD-based crosslinked
membranes produced by traditional interfacial polymerization reactions in solution are
still too dense to enable fast solvent transport [18–21].
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General methods to coordinate the water permeability of the membranes include
improving the membrane surface hydrophilicity [22,23], introducing a water transfer
channel [24,25], and increasing the specific surface area [26]. Electrospinning, as a versatile
and economical method to produce nanofiber membranes with a high length–diameter
ratio and adjustable morphology, has great potential in fields of air filtration [27] and
water purification [28]. Native β-CD is hard to meet a certain viscosity for electrospinning,
while hydroxypropyl β-CD (HP-β-CD) with much better solubility has been used for a non-
polymeric electrospun system [29]. Several methods available to crosslink the water-soluble
electrospun nanofibers include thermal crosslinking [30] and chemical crosslinking with
crosslinking agents such as NHS/EDC [31,32]. There are several approaches to crosslink
the water-soluble electrospun nanofibers, including chemical crosslinking with crosslinking
agents like NHS/EDC [31,32] and thermal crosslinking [30], both of which require much
energy and hazardous reagents. On the other hand, using glutaraldehyde (GA) vapor
for crosslinking can significantly reduce operational complexity and eliminate the need
for expensive and hazardous organic solvents like hexane, which improves convenience,
accessibility, and sustainability [33–35]. More importantly, the vapor phase crosslinking
is sufficiently gentle to preserve the water-soluble nanofibers’ morphology to the fullest
extent possible and create an interconnected structure, which increases the amount of water
transport channels and expedites water flow [36–38].

Since the incorporation of inorganic salt can further improve the hydrophilicity, we
also doped laponite, a cheap clay with negative disk-like surfaces and positive edges, into
the membranes [39,40]. Herein, we electrospun HP-β-CD, PVA, and laponite on polyacry-
lonitrile (PAN)/polyethyleneimine (PEI) electrospinning substrate and employed GA vapor
as crosslinking reagent to obtain multi-layer HP-β-CD crosslinked nanofiber (CD-CNF)
membranes (Figure 1a). The relatively high content of HP-β-CD represented prominent
adsorption capacity with strong host–guest interaction, while PVA was fixed at a low con-
centration to assist the HP-β-CD-dominated electrospinning process. The mass fraction of
laponite to HP-β-CD was changed from 0, 1 wt%, 2 wt%, and 3 wt%, which produced four
kinds of electrospun membranes, CD/PVA/Lap0, CD/PVA/Lap1%, CD/PVA/Lap2%,
and CD/PVA/Lap3%, and the corresponding membranes after crosslinking were denoted
as CD-CNF1, CD-CNF2, CD-CNF3, and CD-CNF4. Interestingly, the doped laponite had
an effect on the electrospinning and further influenced the vapor-driven crosslinking stage.
In the salt-mediated crosslinking process (Figure 1b,c), the existence of laponite would
decrease the crosslinking reactivity and lead to the high maintenance of original electrospun
nanofibers. In contrast to the compact structure of conventional filtration membranes, our
nanofibrous membranes were expected to achieve ultrafast water flux.
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and (c) with laponite.
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2. Materials and Methods
2.1. Materials

All reagents were used without further purification. Polyacrylonitrile (PAN, average
Mw = 150,000), polyethyleneimine (PEI, average Mw = 45,000, 50% aqueous solution),
polyvinyl alcohol (PVA, 99% hydrolyzed, degree of polymerization = 1700), hydroxypropyl
β-cyclodextrin (HP-β-CD, average substitution degree = 7, Mw = 1541.54), laponite, glu-
taraldehyde (GA, 25% aqueous solution), and bovine serum protein (BSA) were purchased
from Macklin Reagent Co., Ltd. (Tianjin, China). Tropaeolin O, Indigo Carmine, Carmoi-
sine, Direct Yellow 12, Reactive Black 5, Basic Red 2, Rhodamine B, Crystal Violet, and
Thioflavine T were purchased from Aladdin Reagent Company.

2.2. Preparation of Nanofibrous Membranes

Electrospinning: 9.6% w/v PAN and 2.4% w/v PEI were dissolved in N, N-dimethylformamide
(DMF) and stirred for 6 h at 80 ◦C to prepare a homogeneous solution. A total of 8 mL
of the solution was loaded into a syringe equipped with a 20 gauge with a flow rate of
4 mLh−1, and a high voltage (15 kV) was applied. The distance between the syringe and
the aluminum (Al) foil-coated collector was 20 cm, and the cylindrical collector rotational
speed was 125 rpm. A total of 1 g of HP-β-CD, 80 mg of PVA, and different weights of
laponite, 0 mg, 10 mg, 20 mg, and 30 mg, corresponding to the weight ratio to HP-β-CD
of 0, 1%, 2%, and 3%, were dissolved in 2 mL of deionized water and stirred overnight,
respectively. The above solutions were transferred to the syringe with a 23 gauge and
electrospun directly onto the PAN/PEI-coated Al foil. The voltage was set as 25 kV, and
the flow rate was 1 mL h−1. Depending on the proportion of laponite to HP-β-CD, the four
kinds of membranes were denoted as CD/PVA/Lap0, CD/PVA/Lap1%, CD/PVA/Lap2%,
and CD/PVA/Lap3%.

A total of 20 mL of GA solution (25% aqueous solution) in a petri dish was put in
a vacuum desiccator, and the obtained electrospun nanofibers on Al foil were covered
beyond the petri dish without touching the solution. After applying the vacuum for 24 h, the
membranes were removed from the foil, washed with deionized water for several minutes,
and vacuum-dried at 50 ◦C overnight. The crosslinked membranes were represented as
CD-CNF1 (CD/PVA/Lap0), CD-CNF2 (CD/PVA/Lap1%), CD-CNF3 (CD/PVA/Lap2%),
and CD-CNF4 (CD/PVA/Lap3%).

2.3. Characterization Methods

A field emission scanning electron microscope (Merlin Compact, Oberkochen,
Germany) was used to acquire the surface morphologies of nanofibrous membranes. A thin
layer of gold was applied to the coat to increase the conductivity. The acceleration voltage
was 30 kV. The average diameters of fibers were measured with Image J software 1.46 r.
A Fourier transform IR spectrometer (Bruker Tensor II, Ettlingen, Germany) was used to
obtain the IR spectra of samples between 4000 and 400 cm−1 under ambient temperature.
X-ray photoelectron spectroscopy (XPS) was carried out on an instrument (Kratos Analyti-
cal Ltd.-Axis Ultra DLD, Manchester, UK) equipped with a monochromatized Al Kα X-ray
source. Data were analyzed with CASA XPS software (version number Casa2319PR1-0).
Thermogravimetric Analysis (TGA) was performed on a thermogravimetric analyzer (NET-
ZSCH, Selb, Germany) in the temperature range from 25 to 800 ◦C at a heating rate of
10 ◦C/min with N2 as a purge gas at a flow rate of 25 mL min−1. The water contact
angle (WCA) was determined using a goniometer consisting of an analyzer (Dataphysics
OCA20, Filderstadt, Germany). The surface charge of the membranes was evaluated by
zeta potential analysis using a SurPASS 3 Electrokinetic Analyzer instrument.

2.4. Water Permeation Studies

The water sorption gravimetric method was used to evaluate the total porosity of the
prepared membranes. The membranes were cut into 10 mm × 10 mm pieces. The dried
weight (Wd) was taken, and then the membranes were soaked in DI water for 24 h. After
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lightly blotting the membrane surface with filter paper to remove water, the weight of the
wet membranes (Ww) was taken. The water content percentage of the membranes was
calculated using the formula

Water content % =
Ww − Wd

Wd
× 100 (1)

After soaking in deionized water for 24 h, the membranes were cut down to 20 mm × 20 mm
squares. The membranes were pre-pressurized for 10 min at 1 bar to stabilize the flux
rate. Pure water and organic solvent, including ethyl alcohol, petroleum ether, and
dichloromethane, were applied for performance analysis. The permeate flux rate (J) for all
the prepared membranes was computed using Equation (2).

J =
Q

t ∗ A
(2)

where Q denotes the volume of permeated solute (in L), t is the time taken during perme-
ation (in h), and A denotes the effective filtration area of membranes (in m2).

2.5. Dye Filtration Experiments

A series of filtration experiments were performed with a dead-end sand core of a
micro-solvent filter device using a vacuum pump. The five kinds of anionic dyes involved
Indigo Carmine, Tropaeolin O, Reactive Black 5, Direct Yellow 12, and Carmoisine, and
the four kinds of cationic dyes included Basic Red 2, Crystal Violet, Rhodamine B, and
Thioflavine T. The effective area of membranes was 1.77 cm2. The concentration of the
dye was fixed at 25 µM, and the feed solution volume was 5 mL. The recyclability of
membranes was also evaluated using the above five kinds of anionic dyes (10 µM), and
the feed solution was 20 mL each time. After filtration, the membranes were soaked in
1 mol/L NaOH solution, oscillated for 5 min, and rinsed with pure water several times.
The filtration/regeneration cycles were repeated four times.

Anti-fouling experiments were conducted by using BSA aqueous solution (500 ppm)
as a model foulant at 1 bar. A total of 40 mL 500 ppm BSA feed solution was applied each
time to attain the permeate flux, and the membranes were washed with deionized water
for one minute. The processes were repeated four times. The initial water flux was chosen
as Jw, and the flux after one cycle was chosen as J0. The water flux after washing with pure
water was denoted as Jw,1. The performance of all membranes was studied for 4 cycles.
Using Equations (3) and (4), the flux values obtained were used to estimate the total fouling
percentage (FT)% and the recovery ratio percentage (FRR)%.

FT(%) =

(
Jw − J0

Jw

)
× 100 (3)

FRR(%) =
Jw,1

Jw
× 100 (4)

3. Results
3.1. Structural and Morphological Characterizations of the CD-CNFs

The FTIR spectra of CD/PVA/Lap0, CD-CNF1, CD-CNF2, CD-CNF3, and CD-CNF4
membranes are presented in Figure 2a. The stretching vibration adsorption of Mg-OH
from laponite emerged at 655 cm−1 in CD-CNF2, CD-CNF3, and CD-CNF4 membranes. In
addition, the characteristic peak of 2240 cm−1 of -C≡N in the substrate layer appeared in
CD-CNF2, CD-CNF3, and CD-CNF4, caused by the laponite participating electrospinning
process, which created surface defects. Except for CD/PVA/Lap0, a new peak at 2820 cm−1

appeared in CD-CNFs belonging to the stretching vibration of CH in the acetal linkage,
and the O-H stretching adsorption at 3200–3600 cm−1 decreased, indicating that the hy-
droxyl groups in HP-β-CD and PVA reacted with aldehyde groups from GA. The peaks
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at 1030 cm−1, 1252 cm−1, and 586 cm−1 ascribed to HP-β-CD were nearly unchanged,
indicating that the characteristic structure of cyclodextrin still remained after crosslinking.
After being treated by GA vapor, the adsorption peak at 1729 cm−1 attributing to the vibra-
tion peak for carbonyl arose, where the membrane without laponite (CD-CNF1) showed
the highest intensity, demonstrating that the doped salt might impede the crosslinking
process of the membrane. Moreover, in the FTIR results of PAN/PEI substrate before and
after GA treatment (Figure S1), the peak attributed to the -NH group at 1561 cm−1 in PEI
disappeared, suggesting that the crosslinking reaction occurs in the substrate membrane. In
the TGA results (Figure 2b), the evaporation of solvents, including DMF and water, caused
the weight loss below 300 ◦C. The mass loss peak at 367 ◦C belonged to the decomposition
temperature of HP-β-CD. All CD-CNF membranes were endowed with better thermal
stability than CD/PVA/Lap0, and CD-CNF1 exhibited best considering the weight loss
stage between 350 ◦C and 400 ◦C. The results illustrated that the thermal stabilities of
CD-CNFs decreased with increasing amounts of laponite.
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Figure 2. (a) FTIR spectra and (b) TGA curves of CD/PVA/Lap0 and CD-CNFs. (c) XPS wide scan
spectra and C 1s core level deconvoluted XPS spectra for (d) CD/PVA/Lap0, (e) CD-CNF1, and
(f) CD-CNF3 membranes, respectively. The groups that could be attributed to the C peak are C-C and
C-H for C1, C-O, C≡N, C-N, and C=O for C2, and O-C-O for C3 [19].

In order to acquire insight into the crosslinking process, X-ray photoelectron spec-
troscopy was applied. The wide scan results of CD/PVA/Lap0 (Figure 2c) showed that in
all membranes, the main peaks of C 1s and O 1s appeared at 285 eV and 532 eV. The element
Si was detected at 150 eV and 99.7 eV on the membranes with the addition of laponite.
Moreover, in CD-CNF3 and CD-CNF4, the binding energy peak at 400 eV assigned to
the N element from the substrate emerged, confirming the existence of surface defects
in the HP-β-CD layer. The deconvoluted C 1s XPS core level spectra of CD/PVA/Lap0
and CD-CNFs demonstrated (Figure 2d–f; Figure S3a,b) that after crosslinking, C1(C-C,
C-H) peak intensity increased and C2(C-O) peak intensity declined in CD-CNF1. With the
increasing content of laponite, the ratio of C1/C2 tended to decrease, indicating a lower
crosslinking degree.

The crosslinking process had a direct impact on the morphology of the membranes.
The scanning electron microscopy (SEM) results of HP-β-CD layers surface morphology
before and after the GA vapor treatment are presented in Figure S4. With an elevated
mass fraction of laponite to HP-β-CD, the diameter of electrospun nanofibers increased
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(Figure S4e–h). Compared with the uniform nanofibers in CD/PVA/Lap0 (Figure 3a,b), the
unsmooth nanofibers with bead structure appeared in CD/PVA/Lap2% by the aggregation
of excessive salt, which might affect the membrane compatibility with the crosslinking
agents. After the GA vapor-driven crosslinking, the fibrous structures of membranes
were maintained to different extents. CD-CNF1 lost its original nanofiber morphology
completely (Figure 3c), displaying as a compact surface layer without porosity, while there
were many bulges attached to nanofibers and obvious minimum intersection in CD-CNF4
with the highest porosity (Figure S4). The most homogeneous morphology was presented in
CD-CNF3 (Figure 3d), achieving the balance between fibrous and intermingled structures.
Moreover, due to the limited content of PEI, the nanofiber structure of the substrate was well
kept with slight fusion after crosslinking in the SEM images of PAN/PEI substrate before
and after crosslinking (Figure S2). According to the cross-section SEM images (Figure 3e,f),
both CD-CNF1 and CD-CNF3 membranes possessed multi-layer fibrous structures. In
contrast to the conventional dense thin film, the membranes presented as 3D loose vesicular
sponge structures with high porosity, providing abundant water transport channels. In the
water uptake experiments, which represented the porosity of the membranes (Figure S7),
the water content for CD-CNF1, CD-CNF2, CD-CNF3, and CD-CNF4 was measured as
14.6%, 26.1%, 54.7%, and 116.3%, respectively, indicating the increased membrane porosity.
After soaking in water for three months, the morphology of PAN/PEI, CD-CNF1, and
CD-CNF3 (Figure S6) did not change with little swelling, suggesting the suitable water
stability of the membranes.
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3.2. Water Permeation and Dye Rejection Performance of the CD-CNFs

Hydrophilicity is also an important factor related to water permeability. The water
contact angle of the PAN/PEI substrate and cyclodextrins-crosslinked layers was measured
(Figure 4a). The results showed that all of the membranes were super hydrophilic as water
droplets could not exist steadily on the surface and would infiltrate into the membranes
within seconds or fewer. The water contact angle at the first 0.5 s was measured to be 104.3◦

for PAN/PEI substrate, 69.1◦ for CD-CNF1, 63.1◦ for CD-CNF2, 45.1◦ for CD-CNF3 and
51.5◦ for CD-CNF4. The surface roughness caused the hysteresis of the permeation, and
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the water contact angle for CD-CNF4 was higher than for CD-CNF3. The above results
demonstrated that the doped laponite could improve the hydrophilicity of the membranes.
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Benefiting from the improved hydrophilicity and high porosity, CD-CNF membranes
all exhibited surprisingly ultrafast water flux. The permeate flux of CD-CNF1, CD-CNF2,
CD-CNF3, and CD-CNF4 for pure water was calculated to be 815 ± 45, 6308 ± 118,
10,047 ± 221, and 19,142 ± 305 Lh−1m−2bar−1, respectively (Figure 4b). The inherent cavity
of cyclodextrin and the interconnected nanofibrous structure of the electrospun membrane
both provided abundant transport channels and facilitated the water molecule speed-up
passage. In addition, the CD-CNF flux for organic solvents was also high (Table S1). For ex-
ample, the flux of the CD-CNF3 membrane for dichloromethane was 11,842 Lh−1m−2bar−1.
By applying the membranes for dye filtration, the CD-CNF3 membrane exhibited a flux up
to 7942 ± 81 Lh−1m−2 bar−1 for Reactive Black 5 solution (10−5 mol L−1) with an excellent
rejection beyond 99%.

The rejection performances of the CD-CNFs were further explored with five kinds of
anionic dyes (Tropaeolin O, Indigo Carmine, Carmoisine, Direct Yellow 12, and Reactive
Black 5) (Figure 5a). When the concentration of the dyes was fixed at 2.5 × 10−5 mol
L−1, CD-CNF3 membranes exhibited a removal efficiency of >99% against the above
dyes with ultrafast permeation. For example, 20 mL of Carmoisine solution was filtrated
to obtain colorless water by CD-CNF3 in 10 s (Figure 5b; Video S1). The two types of
separation mechanisms are electrostatic effect and molecular sieving [37]. Molecular
sieving included the cavity from HP-β-CD and trapping through the nanofibrous structure’s
porosity. Because of its rapid transit and minimal interaction with contaminants, CD-CNF4,
the least crosslinked of the three, exhibited a low dye rejection rate of between 30 and 60%.
Notably, the cyclodextrin cavity’s high affinity for the dye molecule’s structure explained
why CD-CNF1, CD-CNF2, and CD-CNF3 membranes all exhibited strong rejection against
Tropaeolin O. (Figure S9a). The surface charge was determined by zeta potential analysis.
At pH 7, all of the membranes were positively charged (Figure S10). The CD-CNF4 was
less positively charged because of the agglomeration of the clay. CD-CNF1 and CD-
CNF2 membranes with less electrostatic interaction (less laponite) exhibited a moderate
rejection rate of around 80% toward other dyes, whereas in CD-CNF3, salt-mediated
crosslinking interconnected structure and electrostatic interaction realized a consummate
balance, leading to the remarkable removal rate and the ultrafast flux at the same time.
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L−1); (b) equipment of filtration and photograph of Carmoisine (10−5 mol L−1) before and after
filtration; UV–Vis spectrum of mixture of Direct Yellow 12 (5 × 10−6 mol L−1), Indigo Carmine
(5 × 10−6 mol L−1), and Thioflavine T (10−5 mol L−1) before and after filtration with CD-CNF3
film; (c) UV–Vis spectrum of 10−5 mol L−1 pure Thioflavine T solution; (d) UV–Vis spectrum of
mixture of Reactive Black 5 (5 × 10−6 mol L−1), Tropaeolin O (5 × 10−6 mol L−1), and Basic Red
2 (10−5 mol L−1) before and after filtration with CD-CNF3 film; (d) UV–Vis spectrum of 10−5 mol L−1

pure Basic Red 2 solution, the rejection of CD-CNF membranes toward (e) Reactive Black 5 and
(f) Indigo Carmine in four filtration/regeneration cycles.

Moreover, owing to the electrostatic repulsion interaction, the membranes showed
lower rejection properties toward cationic dyes (Figure S11). Therefore, the membranes
can be used for the separation of cationic and anionic dyes. The separation ability of
CD-CNF3 was tested using dye mixtures, including two kinds of anionic dyes and one
kind of cationic dye. The membrane had excellent rejection for two anionic dyes (Direct
Yellow 12, Indigo Carmine) while leaving nearly all of the cationic dye (Thioflavine T) in
the filtrate (Figure 5c). Similar results were obtained with different kinds of mixed dyes of
Reactive Black 5, Tropaeolin O, and Basic Red 2 (Figure 5d). The CD-CNF3 also showed
rapid separation, as shown in the video, that 10 mL of dye mixture solution could pass
through the membrane in 8 s (Video S2). The membranes after dye filtration could be
simply washed with NaOH solution and reused. After four cycles of filtration–regeneration
(Figure 5e,f), the membranes still exhibited a rejection of 97.4% toward Reactive Black 5.
Moreover, the CD-CNF3 membrane also presented suitable rejection for three other anionic
dyes in four filtration/regeneration cycles (Figure S12), with a rejection of 98% toward
Tropaeolin O after four filtration cycles, demonstrating the universal recyclability of the
membranes for the filtration of anionic dyes.

3.3. The Anti-Fouling Properties of the CD-CNFs

Commercial separation membranes with inherent hydrophobicity frequently experi-
ence biomacromolecule fouling [34]. However, the surface hydrophilicity of our reported
membranes was significantly increased. It was studied how the volume of BSA solution
affected the penetration of the membrane using BSA as a model biomacromolecule pollu-
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tant. With the increase in hydrophilicity, the CD-CNF3 and CD-CNF4 membranes were
less contaminated with a lower total fouling ratio (Figure 6a), and the CD-CNF3 membrane
showed suitable flux recovery as the normalized water flux remained at 68% (FRR) after
three cycles (Figure 6b). According to the surface morphology of CD-CNFs, as for CD-CNF1
without laponite (Figure 6c), the macromolecular pollutant is stacked tightly on the surface.
However, there were just a few fibers attached to the pollutant on the surface of CD-CNF3
(Figure 6d) because the BSA has low compatibility with the hydrophilic membranes and
was easily washed away from the membrane surface. The above results confirmed that the
CD-CNF3 membranes had suitable anti-fouling abilities.
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Figure 6. (a) Normalized flux of CD-CNFs changing with the treatment of different volumes of BSA
(500 ppm), in which the dashed line represented rinsing the membranes with pure water; (b) FT (total
fouling ratio) and FRR (Flux recovery ratio) of CD-CNFs in three cycles. The final SEM images of
(c) CD-CNF1 and (d) CD-CNF3 membranes after BSA solution treatment and washing with water.

4. Discussion

In summary, crosslinked nanofiber membranes composed of HP-β-CD, PVA, and
laponite were successfully prepared by electrospinning and GA vapor-driven crosslinking
process. We found that the CD-CNF3 membrane (crosslinked CD/PVA/Lap2% membrane)
possessed outstanding rejection for anionic dyes with an ultrafast water permeance of
10,047 Lh−1m−2bar−1. The intrinsic cavity of cyclodextrin and the nanofibrous structure
produced by the electrospinning and the salt-mediated vapor crosslinking process provided
the membranes with abundant water transport channels, jointly achieving the ultrafast
separation of dye wastewater. Due to the combination of supramolecular adsorption of
HP-β-CD and electrostatic interaction replenished by laponite, the CD-CNF3 membrane
exhibited a remarkable rejection rate of more than 99% against several anionic dyes and
high-efficiency separation of cationic and anionic dyes. Moreover, the super hydrophilicity
of the surface contributed to the suitable anti-fouling properties, leading to better recycla-
bility. Moreover, the membranes with ultrafast separation ability are low-cost and easy to
prepare, which have great potential application in dye sewage treatment.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/chemistry6040029/s1, Figure S1: FTIR spectra of substrate mem-
branes; Figure S2: SEM of substrate membranes; Figure S3: C 1s core level deconvoluted XPS spectra
for CD-CNF2 and CD-CNF4 membranes, respectively; Figure S4: SEM results and nanofiber diameter
distribution of CD-CNFs; Figure S5: Cross-sectional images of CD-CNFs; Figure S6: The SEM results
of the membranes after soaking in water; Figure S7: The water content of CD-CNFs membranes;
Figure S8: Photographs of prepared membranes after filtration; Figure S9: UV–Vis spectrum of
anionic dyes after CD-CNFs filtration; Figure S10: The surface zeta potential of the CD-CNFs at pH 7;
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Figure S11: UV–Vis spectrum of cationic dyes after CD-CNFs filtration; Figure S12: The rejection of
CD-CNF membranes for three dyes in four filtration/regeneration cycles; Table S1: Permeances of
CD-CNFs for three kinds of organic solvents; Video S1: The filtration process of Carmoisine solution
by CD-CNF3 membrane; Video S2: The separation of mixed dyes by CD-CNF3 membrane.
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